Progression of primary pneumonic plague: a mouse model of infection, pathology, and bacterial transcriptional activity.

Department of Molecular Microbiology, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2006; 102(49):17786-91. DOI: 10.1073/pnas.0506840102
Source: PubMed

ABSTRACT Although pneumonic plague is the deadliest manifestation of disease caused by the bacterium Yersinia pestis, there is surprisingly little information on the cellular and molecular mechanisms responsible for Y. pestis-triggered pathology in the lung. Therefore, to understand the progression of this unique disease, we characterized an intranasal mouse model of primary pneumonic plague. Mice succumbed to a purulent multifocal severe exudative bronchopneumonia that closely resembles the disease observed in humans. Analyses revealed a strikingly biphasic syndrome, in which the infection begins with an antiinflammatory state in the first 24-36 h that rapidly progresses to a highly proinflammatory state by 48 h and death by 3 days. To assess the adaptation of Y. pestis to a mammalian environment, we used DNA microarray technology to analyze the transcriptional responses of the bacteria during interaction with the mouse lung. Included among the genes up-regulated in vivo are those comprising the yop-ysc type III secretion system and genes contained within the chromosomal pigmentation locus, validating the use of this technology to identify loci essential to the virulence of Y. pestis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The series of events that occurs immediately after pathogen entrance into the body is largely speculative. Key aspects of these events are pathogen dissemination and pathogen interactions with the immune response as the invader moves into deeper tissues. We sought to define major events that occur early during infection of a highly virulent pathogen. To this end, we tracked early dissemination of Yersinia pestis, a highly pathogenic bacterium that causes bubonic plague in mammals. Specifically, we addressed two fundamental questions: (1) do the bacteria encounter barriers in disseminating to draining lymph nodes (LN), and (2) what mechanism does this nonmotile bacterium use to reach the LN compartment, as the prevailing model predicts trafficking in association with host cells. Infection was followed through microscopy imaging in addition to assessing bacterial population dynamics during dissemination from the skin. We found and characterized an unexpected bottleneck that severely restricts bacterial dissemination to LNs. The bacteria that do not pass through this bottleneck are confined to the skin, where large numbers of neutrophils arrive and efficiently control bacterial proliferation. Notably, bottleneck formation is route dependent, as it is abrogated after subcutaneous inoculation. Using a combination of approaches, including microscopy imaging, we tested the prevailing model of bacterial dissemination from the skin into LNs and found no evidence of involvement of migrating phagocytes in dissemination. Thus, early stages of infection are defined by a bottleneck that restricts bacterial dissemination and by neutrophil-dependent control of bacterial proliferation in the skin. Furthermore, and as opposed to current models, our data indicate an intracellular stage is not required by Y. pestis to disseminate from the skin to draining LNs. Because our findings address events that occur during early encounters of pathogen with the immune response, this work can inform efforts to prevent or control infection.
    PLoS Pathogens 01/2015; 11(1):e1004587. DOI:10.1371/journal.ppat.1004587 · 8.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Author Summary To establish infection and colonize within a host, infecting pathogens have to cope with a variety of destructive surroundings. The food-borne pathogen Y. pseudotuberculosis can cause persistent infection in mice. Upon infection, Y. pseudotuberculosis passes the anti-microbial gastrointestinal milieu and finally remains associated with lymphoid follicles in cecal tissue surrounded by polymorphonuclear leukocytes, indicating that the bacteria are exposed to multiple environmental cues. We performed complex RNA-seq of small cecal biopsies of infected mice to reveal Y. pseudotuberculosis gene expression in vivo. We found that Y. pseudotuberculosis underwent reprogramming from a virulent phenotype, expressing virulence genes during early infection, to an adapted phenotype capable of persisting in the harsh cecal environment. Persistence was characterized by a novel expression pattern with down-regulation of virulence genes and up-regulation of genes involved in anaerobiosis, chemotaxis, and protection against oxidative and acidic stress. Mutagenesis of selected genes revealed that the regulator rovA was critical for the establishment of infection, and that arcA, fnr, frdA, and wrbA play critical roles in maintaining infection for long periods of time. Our study shows the power of RNA deep sequencing, which can be used to reveal the in vivo expression patterns of small amounts of bacteria in complex intestinal environments.
    PLoS Pathogens 01/2015; 11(1):e1004600. DOI:10.1371/journal.ppat.1004600 · 8.06 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inhalation of Yersinia pestis results in primary pneumonic plague, a highly lethal and rapidly progressing necrotizing pneumonia. The disease begins with a period of extensive bacterial replication in the absence of disease symptoms, followed by the sudden onset of inflammatory responses that ultimately prove fatal. Very little is known about the bacterial and host factors that contribute to the rapid biphasic progression of pneumonic plague. In this work, we analyzed the in vivo transcription kinetics of 288 bacterial open reading frames previously shown by microarray analysis to be dynamically regulated in the lung. Using this approach combined with bacterial genetics, we were able to identify five Y. pestis genes that contribute to the development of pneumonic plague. Deletion of one of these genes, ybtX, did not alter bacterial survival but attenuated host inflammatory responses during late-stage disease. Deletion of ybtX in another lethal respiratory pathogen, Klebsiella pneumoniae, also resulted in diminished host inflammation during infection. Thus, our in vivo transcriptional screen has identified an important inflammatory mediator that is common to two Gram-negative bacterial pathogens that cause severe pneumonia.
    mBio 02/2015; 6(1):e02302-14. DOI:10.1128/mBio.02302-14 · 6.88 Impact Factor

Full-text (2 Sources)

Available from
Jun 1, 2014