Article

Simultaneous mutations in the CLCNKB and SLC12A3 genes in two siblings with phenotypic heterogeneity in classic Bartter syndrome.

Department of Pediatrics, San Leopoldo Mandic Hospital, Merate, and Department of Pediatrics and Neonatology, University of Milan, Italy.
Pediatric Research (Impact Factor: 2.67). 01/2006; 58(6):1269-73. DOI: 10.1203/01.pdr.0000185267.95466.41
Source: PubMed

ABSTRACT Two siblings (brother and sister) with renal tubular hypokalemic alkalosis underwent clinical, biochemical and molecular investigations. Although the biochemical findings were similar (including hypokalemia, metabolic alkalosis, hyperreninemia, hyperaldosteronism and normal blood pressure), the clinical findings were different: the boy, who also presented syndromic signs, developed glomerular proteinuria and renal biopsy revealed focal segmental glomerular sclerosis; the girl showed the typical signs of classic Bartter syndrome. As described in a previous paper, a heterozygous mutation (frameshift 2534delT) was demonstrated in the gene encoding the thiazide-sensitive NaCl co-transporter (SLC12A3) of the distal convoluted tubule; the second molecular analysis revealed a compound heterozygous mutation (A61D/V149E) in the CLCNKB chloride channel gene in both subjects, inherited in trans from the parents. The children were finally diagnosed as having classic Bartter syndrome. These cases represent the first report of the simultaneous presence of heterozygous and compound heterozygous mutations in the SLC12A3 and CLCNKB genes, both of which are involved in renal salt losing tubulopathies, and confirm previous observations regarding classic Bartter syndrome phenotype variability in the same kindred.

0 Bookmarks
 · 
111 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: GOLPH2 is a highly conserved protein. It is upregulated in a number of tumors and is being considered as an emerging biomarker for related diseases. However, the function of GOLPH2 remains unknown. The Xenopus model is used to study the function of human proteins. We describe the isolation and characterization of Xenopus golph2, which dimerizes and localizes to the Golgi in a manner similar to human GOLPH2. Xenopus golph2 is expressed in the pronephros during early development. The morpholino-mediated knockdown of golph2 results in edema formation. Additionally, Nephrin expression is enhanced in the glomus, and the expression of pronephric marker genes, such as atp1b1, ClC-K, NKCC2, and NBC1, is diminished in the tubules and duct. Expression patterns of the transcription factors WT1, Pax2, Pax8, Lim1, GATA3, and HNF1β are also examined in the golph2 knockdown embryos, the expression of WT1 is increased in the glomus and expanded laterally in the pronephric region. We conclude that the deletion of golph2 causes an increase in the expression of WT1, which may promote glomus formation and inhibit pronephric tubule differentiation.
    PLoS ONE 01/2012; 7(6):e38939. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Resume Gitelmans syndrom er et sjaeldent autosomalt recessivt syndrom, som praesenterer sig ved hypocalcuri, hypomagnaesiemi og hypo-kalaemisk metabolisk alkalose. I sygehistorien beskrives en sjael-den debutform af tilstanden med generaliserede kramper, og hvor man samtidig finder hypokaliaemi, hypomagnesiaemi og metabo-lisk alkalose. Patienten fik påvist en homozygot deletion af CLCNKB, Clc-Kb-genet. Patienten blev behandlet med højdosi-skalium og -magnesium med god effekt. Gitelmans syndrom (GS) er et sjaeldent syndrom, der skyldes mutationer i kloridkanalgenet [1] SLC12A3, naermere beteg-net i den thiazidfølsomme NaCl-kotransportør i de distale tubuli af Henleys slynge. Genet er lokaliseret på kromosom 16q3. Det består af 55kb, der er fordelt på 26 exoner, og det koder for et protein på 1.021 aminosyrer. Et nyligt studie fra Israel [2] rapporterede, at mutationer i det basale kloridkanal-gen (ClC-Kb) CLCNKB ligeledes kan fremkalde fenotyper, som overlapper med enten antenatal Bartters syndrom eller GS. Arvegangen er autosomal, recessiv. Bartters syndrom (BS) er associeret med CLCNKB-genforandringer, og kan inddeles i tre grupper: BS type I: mutationer i gener, som koder for Na-K-2Cl-kotransporter (NKCC2), BS type II: mutationer i kaliumkanal (ROMK), og BS type III: mutationer i kloridkanal (ClC-Kb), som kaldes for det klassiske Bartter syndrom. Tilstandene fremtraeder heterogene og med overlapninger. Man taler også om et Gitelman-lignende Bartter syndrom med mindre svaerhedsgrad og manglende nefrokalcinose. BS er en svaer sygdom, som kan debutere i fosterlivet med hydramnion eller neonatalt med praematuritet, vaeksthaem-ning og nefrokalcinose. GS er en mild variant af BS, som er karakteriseret ved et fredeligt forløb og sen debutalder. Pa-tienterne er enten homozygote eller hyppigere compound-heterozygote, dvs. med forskellige mutationer på hver sin allel [3]. Et tidligere studie fra Sverige angiver en årlig incidens på 1,2/1.000.000 og en praevalens på 19/1.000.000, hvilket svarer til en heterozygotfrekvens på ca. 0,9% [4]. GS diagnos-ticeres ofte først i ungdommen eller i den tidlige voksen-alder, som regel ved en tilfaeldigt påvist paraklinisk ubalance, som minder om langvarig thiazidbehandling, dvs. hypokali-aemi eller hypomagnesiaemi, metabolisk alkalose og hypo-calciuri. GS viser sig saedvanligvis ved nedsat muskelkraft, paraestesier, abdominalsmerter og opkastninger. I neden-stående sygehistorie beskrives en sjaelden debutform af til-standen.
    01/2009;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clinical and genetic studies have suggested that a loss of function and gain of function mutation in the same gene can cause different diseases. The aim of this study was to test the hypothesis that inactivating mutations in WNK1 (with no K (lysine) protein kinase-1) or WNK4 could be a new candidate for causing hypokalemic salt-losing tubulopathy (SLT) in those patients with unknown genetic defects because SLT is the opposite phenotype to pseudohypoaldosteronism type II (PHAII). We screened 44 SLTs patients and found that 33 (75%) cases had homozygous or compound heterozygous mutations in CLCNKB or SLC12A3. Two novel missense mutations were identified in WNK1, but not in WNK4, in 2 of the remaining 11 patients. The WNK1 mutations occurred in the protein C-terminus domain, de novo and inherited, respectively. One of these WNK1 mutations was shown to reduce NCC protein membrane expression in vitro because of impairing the suppressive effect of WNK4-mediated inhibition. Taken together, our findings suggest that inactivating mutations in WNK1 may cause SLT, a phenotype opposite to that of PHAII caused by WNK1 intronic deletion.
    Clinical Genetics 08/2012; · 4.25 Impact Factor

Full-text

Download
14 Downloads
Available from
May 22, 2014