Article

Preliminary measurements of aromatic VOCs in public transportation modes in Guangzhou, China.

Department of Civil and Structural Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
Environment International (Impact Factor: 6.25). 08/2003; 29(4):429-35. DOI: 10.1016/S0160-4120(02)00189-7
Source: PubMed

ABSTRACT This study examined the exposure level of aromatic volatile organic compounds (VOCs) in public transportation modes in Guangzhou, China. A total of 40 VOC samples were conducted in four popular public commuting modes (subway, taxis, non-air-conditioned buses and air-conditioned buses) while traversing in urban areas of Guangzhou. Traffic-related VOCs (benzene, toluene, ethylbenzene, m/p-xylene and o-xylene) were collected on adsorbent tubes and analyzed by thermal desorption (TD) and gas chromatography/mass-selective detector (GC/MSD) technique. The results indicate that commuter exposure to VOCs is greatly influenced by the choice of public transport. For the benzene measured, the mean exposure level in taxis (33.6 microg/m(3)) was the highest and was followed by air-conditioned buses (13.5 microg/m(3)) and non-air-conditioned buses (11.3 microg/m(3)). The exposure level in the subway (7.6 microg/m(3)) is clearly lower than that in roadway transports. The inter-microenvironment variations of other target compounds were similar to that of benzene. The target VOCs were well correlated to each other in all the measured transports. The concentration profile of the measured transport was also investigated and was found to be similar to each other. Based on the experiment results, the average B/T/E/X found in this study was about (1.0/4.3/0.7/1.4). In this study, the VOC levels measured in evening peak hours were only slightly higher than those in afternoon non-peak hours. This is due to the insignificant change of traffic volume on the measured routes between these two set times. The out-dated vehicle emission controls and slow-moving traffic conditions may be the major reasons leading elevated in-vehicle exposure level in some public commuting journeys.

0 Bookmarks
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the past three decades, China has experienced rapid urbanization. The risks to its urban population posed by inhalation exposure to hazardous air pollutants (HAPs) have not been well characterized. Here, we summarize recent measurements of 16 highly prevalent HAPs in urban China and compile their distribution inputs. Based on activity patterns of urban Chinese working adults, we derive personal exposures. Using a probabilistic risk assessment method, we determine cancer and non-cancer risks for working females and males. We also assess the uncertainty associated with risk estimates using Monte Carlo simulation, accounting for variations in HAP concentrations, cancer potency factors (CPFs) and inhalation rates. Average total lifetime cancer risks attributable to HAPs are 2.27×10(-4) (2.27 additional cases per 10,000 people exposed) and 2.93×10(-4) for Chinese urban working females and males, respectively. Formaldehyde, 1,4-dichlorobenzene, benzene and 1,3-butadiene are the major risk contributors yielding the highest median cancer risk estimates, >1×10(-5). About 70% of the risk is due to exposures occurring in homes. Outdoor sources contribute most to the risk of benzene, ethylbenzene and carbon tetrachloride, while indoor sources dominate for all other compounds. Chronic exposure limits are not exceeded for non-carcinogenic effects, except for formaldehyde. Risks are overestimated if variation is not accounted for. Sensitivity analyses demonstrate that the major contributors to total variance are range of inhalation rates, CPFs of formaldehyde, 1,4-dichlorobenzene, benzene and 1,3-butadiene, and indoor home concentrations of formaldehyde and benzene. Despite uncertainty, risks exceeding the acceptable benchmark of 1×10(-6) suggest actions to reduce exposures. Future efforts should be directed toward large-scale measurements of air pollutant concentrations, refinement of CPFs and investigation of population exposure parameters. The present study is a first effort to estimate carcinogenic and non-carcinogenic risks of inhalation exposure to HAPs for the large working populations of Chinese cites.
    Environment international. 08/2014; 73C:33-45.
  • Source
    International Journal of Occupational Hygiene. 12/2013; 5(5):152-158.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the past three decades, China has experienced rapid urbanization. The risks to its urban population posed by inhalation exposure to hazardous air pollutants (HAPs) have not been well characterized. Here, we summarize recent measurements of 16 highly prevalent HAPs in urban China and compile their distribution inputs. Based on activity patterns of urban Chinese working adults, we derive personal exposures. Using a probabilistic risk assessment method, we determine cancer and non-cancer risks for working females and males. We also assess the uncertainty associated with risk estimates using Monte Carlo simulation, accounting for variations in HAP concentrations, cancer potency factors (CPFs) and inhalation rates. Average total lifetime cancer risks attributable to HAPs are 2.27 × 10− 4 (2.27 additional cases per 10,000 people exposed) and 2.93 × 10− 4 for Chinese urban working females and males, respectively. Formaldehyde, 1,4-dichlorobenzene, benzene and 1,3-butadiene are the major risk contributors yielding the highest median cancer risk estimates, > 1 × 10− 5. About 70% of the risk is due to exposures occurring in homes. Outdoor sources contribute most to the risk of benzene, ethylbenzene and carbon tetrachloride, while indoor sources dominate for all other compounds. Chronic exposure limits are not exceeded for non-carcinogenic effects, except for formaldehyde. Risks are overestimated if variation is not accounted for. Sensitivity analyses demonstrate that the major contributors to total variance are range of inhalation rates, CPFs of formaldehyde, 1,4-dichlorobenzene, benzene and 1,3-butadiene, and indoor home concentrations of formaldehyde and benzene. Despite uncertainty, risks exceeding the acceptable benchmark of 1 × 10− 6 suggest actions to reduce exposures. Future efforts should be directed toward large-scale measurements of air pollutant concentrations, refinement of CPFs and investigation of population exposure parameters. The present study is a first effort to estimate carcinogenic and non-carcinogenic risks of inhalation exposure to HAPs for the large working populations of Chinese cites.
    Environment International. 01/2014; 73:33–45.

Full-text (2 Sources)

View
132 Downloads
Available from
May 21, 2014