Article

Optimizing plasmid-based gene transfer for investigating skeletal muscle structure and function.

Department of Physiology, The University of Melbourne, Melbourne, VIC 3010, Australia.
Molecular Therapy (Impact Factor: 6.43). 05/2006; 13(4):795-803. DOI: 10.1016/j.ymthe.2005.09.019
Source: PubMed

ABSTRACT Intramuscular injection of naked plasmid DNA is a less cytotoxic alternative to viral vectors for delivering genetic material to skeletal muscle in vivo. However, the low efficiency of plasmid-based gene transfer limits its potential therapeutic efficacy and/or its use for many experimental applications. Current strategies to enhance transfection efficiency (i.e., electroporation) can cause significant muscle damage, confounding physiological assessments such as muscle contractility. Optimizing protocols to limit damage is critical for accurate physiological, biochemical, and molecular measurements. Following extensive testing, we developed an electroporation protocol that enhances transfection efficiency in skeletal muscles without causing muscle damage. Pretreating mouse tibialis anterior muscles with hyaluronidase and electroporation at 75 V/cm (using 50% vol/vol saline as a vehicle for plasmid DNA) resulted in 22 +/- 5% of the muscle fibers expressing a reporter gene. This protocol did not compromise contractile function of skeletal muscles assessed at both the intact (whole) muscle and the cellular (single fiber) level. Furthermore, ectopic expression of insulin-like growth factor I to levels that induced muscle fiber hypertrophy without causing tissue damage or compromising muscle function highlights the therapeutic potential of these methods for myopathies, muscle wasting disorders, and other pathophysiologic conditions.

0 Bookmarks
 · 
69 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Existing data suggest that NF-kappaB signaling is a key regulator of cancer-induced skeletal muscle wasting. However, identification of the components of this signaling pathway and of the NF-κB transcription factors that regulate wasting is far from complete. In muscles of C26 tumor bearing mice, overexpression of dominant negative (d.n.) IKKβ blocked muscle wasting by 69% and the IκBα-super repressor blocked wasting by 41%. In contrast, overexpression of d.n. IKKα or d.n. NIK did not block C26-induced wasting. Surprisingly, overexpression of d.n. p65 or d.n. c-Rel did not significantly affect muscle wasting. Genome-wide mRNA expression arrays showed upregulation of many genes previously implicated in muscle atrophy. To test if these upregulated genes were direct targets of NF-κB transcription factors, we compared genome-wide p65 binding to DNA in control and cachectic muscle using ChIP-sequencing. Bioinformatic analysis of ChIP-sequencing data from control and C26 muscles showed very little p65 binding to genes in cachexia and little to suggest that upregulated p65 binding influences the gene expression associated with muscle based cachexia. The p65 ChIP-seq data are consistent with our finding of no significant change in protein binding to an NF-κB oligonucleotide in a gel shift assay, no activation of a NF-κB-dependent reporter, and no effect of d.n.p65 overexpression in muscles of tumor bearing mice. Taken together, these data support the idea that although inhibition of IκBα, and particularly IKKβ, blocks cancer-induced wasting, the alternative NF-κB signaling pathway is not required. In addition, the downstream NF-κB transcription factors, p65 and c-Rel do not appear to regulate the transcriptional changes induced by the C26 tumor. These data are consistent with the growing body of literature showing that there are NF-κB-independent substrates of IKKβ and IκBα that regulate physiological processes.
    PLoS ONE 01/2014; 9(1):e87776. DOI:10.1371/journal.pone.0087776 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Efficient DNA electrotransfer into muscles can be achieved by combining two types of electronic pulses sequentially: short high-voltage (HV) pulse for the cell electropermeabilization and long low-voltage (LV) pulse for the DNA electrophoresis into cells. However, the voltages currently applied can still induce histological and functional damages to tissues. Pluronic L64 has been considered as a molecule possessing cell membrane-disturbing ability. For these reasons, we hope that L64 can be used as a substitute for the HV pulse in cell membrane permeabilization, and a safe LV pulse may still keep the ability to drive plasmid DNA across the permeabilized membrane. In this work, we optimized the electrotransfer parameters to establish a safe and efficient procedure using a clinically applied instrument, and found out that the critical condition for a successful combination of electrotransfer with L64 was that the injection of plasmid/L64 mixture should be applied 1 h before the electrotransfer. In addition, we revealed that the combined procedure could not efficiently transfer plasmid into solid tumor because the uncompressed plasmid may rapidly permeate the leaky tumor vessels and flow away. Altogether, the results demonstrate that the combined procedure has the potential for plasmid-based gene therapy through safe and efficient local gene delivery into skeletal muscles.Gene Therapy advance online publication, 3 April 2014; doi:10.1038/gt.2014.27.
    Gene therapy 04/2014; DOI:10.1038/gt.2014.27 · 4.75 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Skeletal muscle comprises approximately 40% of body weight, and is important for locomotion, as well as for metabolic homeostasis. Adult skeletal muscle mass is maintained by a fine balance between muscle protein synthesis and degradation. In response to cytokines, nutrients, and mechanical stimuli, skeletal muscle mass is increased (hypertrophy), whereas skeletal muscle mass is decreased (atrophy) in a variety of conditions, including cancer cachexia, starvation, immobilization, aging, and neuromuscular disorders. Recent studies have determined two important signaling pathways involved in skeletal muscle mass. The insulin-like growth factor-1 (IGF-1)/Akt pathway increases skeletal muscle mass via stimulation of protein synthesis and inhibition of protein degradation. By contrast, myostatin signaling negatively regulates skeletal muscle mass by reducing protein synthesis. In addition, the discovery of microRNAs as novel regulators of gene expression has provided new insights into a multitude of biological processes, especially in skeletal muscle physiology. We summarize here the current knowledge of microRNAs in the regulation of skeletal muscle hypertrophy, focusing on the IGF-1/Akt pathway and myostatin signaling.
    Frontiers in Physiology 01/2013; 4:408. DOI:10.3389/fphys.2013.00408
    This article is viewable in ResearchGate's enriched format

Full-text (2 Sources)

Download
23 Downloads
Available from
May 15, 2014