Can mechanical myotonometry or electromyography be used for the prediction of intramuscular pressure?

Department of Applied Physics, University of Kuopio, POB 1627, Finland.
Physiological Measurement (Impact Factor: 1.81). 12/2005; 26(6):951-63. DOI: 10.1088/0967-3334/26/6/006
Source: PubMed


The aim of the study was to characterize the electromechanical properties of skeletal muscle during isometric loading as well as to assess the potential of estimating intramuscular pressure by electrical and mechanical methods. Simultaneous electromyography (EMG), mechanical myotonometry (MYO, frequency and decrement of decay) and intramuscular pressure (IMP) measurements were conducted at rest and during short-term and long-term isometric contractions in patients with chronic pain in the anterior leg or dorsal forearm. The EMG amplitude and MYO(freq) accounted significantly (24-73%, p < 0.0001) for the variations in the IMP under short-term isometric loading. The IMP, EMG and MYO(freq) increased linearly with the relative muscle load (r = 0.868-0.993, p < 0.05). Mean values of EMG amplitudes at the contraction levels of 75% and 100% maximum voluntary contraction (MVC) and MYO(freq) values at all contraction levels (0-100% MVC) were higher for subjects with pathological values of IMP than for those with IMP values in the normal range. Total changes in IMP and EMG amplitude during 1 min isometric contraction were linearly interrelated (r = 0.747, p < 0.0001). We conclude that both surface electromyography and myotonometry parameters are indicative of intramuscular pressure, but neither of these methods can be used alone to diagnose non-invasively chronic compartment syndrome with acceptable accuracy.

Download full-text


Available from: Arved Vain,
  • Source
    • "The validity of the myotonometer has been established in healthy individuals [17] [18], in patients with chronic pain in the anterior leg or dorsal forearm [19], in patients with upper motoneuron disorders [12], and in stroke survivors [20]. Myotonometric measurements of muscle stiffness showed an approximately linear increase with increasing electromyographic measurements of muscle activation and contractile force during voluntary isometric contraction, indicating tissue displacement during contracted conditions provided an indirect measure of muscle strength [17] [18] [19]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective. Test-retest reliability of the myotonometer was investigated in patients with subacute stroke. Methods. Twelve patients with substroke (3 to 9 months poststroke) were examined in standardized testing position twice, 60 minutes apart, with the Myoton-3 myometer to measure tone, elasticity, and stiffness of relaxed bilateral biceps and triceps brachii muscles. Intrarater reliability of muscle properties was determined using intraclass correlation coefficient (ICC), the standard error of measurement (SEM), and the minimal detectable change (MDC). Results. Intrarater reliability of muscle properties of bilateral biceps and triceps brachii muscles were good (ICCs = 0.79-0.96) except for unaffected biceps tone (ICC = 0.72). The SEM and MDC of bilateral biceps and triceps brachii muscles indicated small measurement error (SEM% <10%, MDC% <25%). Conclusion. The Myoton-3 myometer is a reliable tool for quantifying muscle tone, elasticity, and stiffness of the biceps and triceps brachii in patients with subacute stroke.
    Stroke Research and Treatment 04/2012; 2012(2):617694. DOI:10.1155/2012/617694
  • Source
    • "However, they are basically dynamic, operating at macroanatomical levels via imposed passive joint movements (calf, thigh, or the trunk). Emerging technology, like the Myoton instrument [86, 87] and ultrasonic shear wave elastography [50, 88–90] will enable noninvasive quantification of resting muscle properties of elasticity, stiffness, and tension at precise lumbar anatomical levels. The Myoton range of depth measurements is mainly limited to several centimeters within the more superficial muscles, for example, erector spinae. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Ankylosing spondylitis (AS) is not fully explained by inflammatory processes. Clinical, epidemiological, genetic, and course of disease features indicate additional host-related risk processes and predispositions. Collectively, the pattern of predisposition to onset in adolescent and young adult ages, male preponderance, and widely varied severity of AS is unique among rheumatic diseases. However, this pattern could reflect biomechanical and structural differences between the sexes, naturally occurring musculoskeletal changes over life cycles, and a population polymorphism. During juvenile development, the body is more flexible and weaker than during adolescent maturation and young adulthood, when strengthening and stiffening considerably increase. During middle and later ages, the musculoskeletal system again weakens. The novel concept of an innate axial myofascial hypertonicity reflects basic mechanobiological principles in human function, tissue reactivity, and pathology. However, these processes have been little studied and require critical testing. The proposed physical mechanisms likely interact with recognized immunobiological pathways. The structural biomechanical processes and tissue reactions might possibly precede initiation of other AS-related pathways. Research in the combined structural mechanobiology and immunobiology processes promises to improve understanding of the initiation and perpetuation of AS than prevailing concepts. The combined processes might better explain characteristic enthesopathic and inflammatory processes in AS.
    12/2011; 2011(4):205904. DOI:10.1155/2011/205904
  • Source
    • "The frequency and decrement of damping oscillations which are then obtained can be used to calculate muscle stiffness (Korhonen et al 2005, Viir et al 2006, Bizzini and Mannion 2003). Potential interesting applications of this method include the effect of massage, stretching, relaxation therapy, muscle relaxants and disuse on muscle stiffness (Bizzini and Mannion 2003). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Portable tensiomyography (TMG) and myotonometry (MMT) devices have been developed to measure mechanical and contractile properties of skeletal muscle. The aim of this study was to explore the sensitivity of the aforementioned techniques in detecting a change in passive mechanical properties of the biceps femoris (BF) muscle as a result of change in knee joint angle (i.e. muscle length). BF responses were assessed in 16 young participants (23.4 ± 4.9 years), at three knee joint angles (0°, 45° and 90°), for maximal isometric torque (MIT) along with myo-electrical activity. Contractile and mechanical properties were measured in a relaxed state. Inter-day reliability of the TMG and MMT was also assessed. MIT changed significantly (p < 0.01) across the three angles, so did stiffness and other parameters measured with MMT (p < 0.01). Conversely, TMG could detect changes only at two knee angles (0° and 45°, p < 0.01), when there is enough tension in the muscle. Reliability was overall insufficient for TMG whilst absolute reliability was excellent (coefficient of variation < 5%) for MMT. The ability of MMT more than TMG to detect an inherent change in stiffness can be conceivably exploited in a number of clinical/therapeutic applications that have to do with unnatural changes in passive muscle stiffness.
    Physiological Measurement 08/2011; 32(8):1315-26. DOI:10.1088/0967-3334/32/8/020 · 1.81 Impact Factor
Show more