Article

Identification of signatures in biomedical spectra using domain knowledge.

Institute for Biodiagnostics, National Research Council, 435 Ellice Avenue, Winnipeg, Manitoba, Canada R3B 1Y6.
Artificial Intelligence in Medicine (Impact Factor: 1.36). 12/2005; 35(3):215-26. DOI: 10.1016/j.artmed.2004.12.002
Source: DBLP

ABSTRACT Demonstrate that incorporating domain knowledge into feature selection methods helps identify interpretable features with predictive capability comparable to a state-of-the-art classifier.
Two feature selection methods, one using a genetic algorithm (GA) the other a L(1)-norm support vector machine (SVM), were investigated on three real-world biomedical magnetic resonance (MR) spectral datasets of increasing difficulty. Consensus sets of the feature sets obtained by the two methods were also assessed.
Features identified independently by the two methods and by their consensus, determine class-discriminatory groups or individual features, whose predictive power compares favorably with that of a state-of-the-art classifier. Furthermore, the identified feature signatures form stable groupings at definite spectral positions, hence are readily interpretable. This is a useful and important practical result for generating hypothesis for the domain expert.

0 Bookmarks
 · 
92 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study proposes a method for the estimation of peripheral vascular occlusion (PVO) in diabetic foot using a support vector machine (SVM) classifier with the wolf pack search (WPS) algorithm. The long-term presence of elevated blood sugar levels commonly results in peripheral neuropathy, peripheral vascular disease, nephropathy, and retinopathy in patients with Type 2 diabetes mellitus. Patients with PVO disease have decreased walking capability and life quality in diabetes mellitus and poor peripheral circulation of PVO causes morbidity like infection and amputation of the legs or feet of diabetics. This progressively vascular occlusion is often ignored by the patients and primary care physicians in early stage. Therefore, a reliable method of diagnostic assistance is crucial for early diagnosis and monitoring of PVO and prevention of amputation. Photoplethysmography (PPG) is a non-invasive technique for detecting blood volume changes in peripheral vascular bed. Literature indicates that the pulse transit time increases and waveform shape changes increase in PPG of the vascular occlusion. PPG pulses of feet gradually become asynchronous due to the different speed of deteriorating patency and collateral circulation in the peripheral arteries. We utilized synchronizing chaotification to compare the bilateral similarity and asymmetry of PPG signals, and applied SVM to estimate three degrees of PVO. Among 33 subjects tested, this classification technique could recognize various butterfly motion patterns representing severities successfully including normal condition, lower-degree disease, and higher-degree disease. The proposed method has potential for providing diagnostic assistance for PVO of diabetics and other high-risk populations, with efficiency and higher accuracy.
    Biomedical Signal Processing and Control 01/2014; 9:45–55. · 1.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accurate classification methods are critical in computer-aided diagnosis and other clinical decision support systems. Previous research has studied methods for combining genetic algorithms for feature selection with ensemble classifier systems in an effort to increase classification accuracy. We propose a two-step approach that first uses genetic algorithms to reduce the number of features used to characterize the data, then applies the random subspace method on the remaining features to create a set of diverse but high performing classifiers. These classifiers are combined using ensemble learning techniques to yield a final classification. We demonstrate this approach for computer-aided diagnosis of solitary pulmonary nodules from CT scans, in which the proposed method outperforms several previously described methods.
    Proceedings of the IEEE Symposium on Computer-Based Medical Systems 07/2008;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Applying Fourier-transform infrared (FTIR) spectroscopy (or related technologies such as Raman spectroscopy) to biological questions (defined as biospectroscopy) is relatively novel. Potential fields of application include cytological, histological and microbial studies. This potentially provides a rapid and non-destructive approach to clinical diagnosis. Its increase in application is primarily a consequence of developing instrumentation along with computational techniques. In the coming decades, biospectroscopy is likely to become a common tool in the screening or diagnostic laboratory, or even in the general practitioner's clinic. Despite many advances in the biological application of FTIR spectroscopy, there remain challenges in sample preparation, instrumentation and data handling. We focus on the latter, where we identify in the reviewed literature, the existence of four main study goals: Pattern Finding; Biomarker Identification; Imaging; and, Diagnosis. These can be grouped into two frameworks: Exploratory; and, Diagnostic. Existing techniques in Quality Control, Pre-processing, Feature Extraction, Clustering, and Classification are critically reviewed. An aspect that is often visited is that of method choice. Based on the state-of-art, we claim that in the near future research should be focused on the challenges of dataset standardization; building information systems; development and validation of data analysis tools; and, technology transfer. A diagnostic case study using a real-world dataset is presented as an illustration. Many of the methods presented in this review are Machine Learning and Statistical techniques that are extendable to other forms of computer-based biomedical analysis, including mass spectrometry and magnetic resonance.
    The Analyst 05/2012; 137(14):3202-15. · 3.91 Impact Factor

Full-text (2 Sources)

Download
4 Downloads
Available from
Aug 14, 2014