Longitudinal changes in white matter following ischemic stroke: a three-year follow-up study.

Department of Neurological Sciences, Rush University Medical Center, Room 341B, 1735 West Harrison Street, Chicago, IL 60612, USA. <>
Neurobiology of aging (Impact Factor: 4.85). 01/2007; 27(12):1827-33. DOI: 10.1016/j.neurobiolaging.2005.10.008
Source: PubMed

ABSTRACT Information on longitudinal changes in white matter after stroke is limited. The aim of the present study was to quantitatively investigate longitudinal changes in the microstructural integrity of non-lesioned white matter at 1-3 years following ischemic stroke. In a sample of 80 ischemic stroke patients, we obtained diffusion tensor imaging (DTI) measures of fractional anisotropy (FA), an apparent measure of white matter integrity, in radiologically normal-appearing white matter at baseline and 3 years of follow-up. Mixed model regression analysis results showed a significant improvement in FA from baseline during the first 2 years of follow-up that stabilized by the third year of follow-up. These results demonstrate a long-term improvement in apparent white matter integrity following ischemic stroke that continues, at least, into the second year following the insult.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Large-scale longitudinal neuroimaging studies with diffusion imaging techniques are necessary to test and validate models of white matter neurophysiological processes that change in time, both in healthy and diseased brains. The predictive power of such longitudinal models will always be limited by the reproducibility of repeated measures acquired during different sessions. At present, there is limited quantitative knowledge about the across-session reproducibility of standard diffusion metrics in 3T multi-centric studies on subjects in stable conditions, in particular when using tract based spatial statistics and with elderly people. In this study we implemented a multi-site brain diffusion protocol in 10 clinical 3T MRI sites distributed across 4 countries in Europe (Italy, Germany, France and Greece) using vendor provided sequences from Siemens (Allegra, Trio Tim, Verio, Skyra, Biograph mMR), Philips (Achieva) and GE (HDxt) scanners. We acquired DTI data (2x2x2 mm(3), b=700s/mm(2), 5 b0 and 30 diffusion weighted volumes) of a group of healthy stable elderly subjects (5 subjects per site) in two separate sessions at least a week apart. For each subject and session four scalar diffusion metrics were considered: fractional anisotropy (FA), mean diffusivity (MD), radial (RD) and axial (AD) diffusivity. The diffusion metrics from multiple subjects and sessions at each site were aligned to their common white matter skeleton using tract-based spatial statistics. The reproducibility at each MRI site was examined by looking at group averages of absolute changes relative to the mean (%) on various parameters: i) reproducibility of the signal-to-noise ratio (SNR) of the b0 images in centrum semiovale, ii) full brain test-retest differences of the diffusion metric maps on the white matter skeleton, iii) reproducibility of the diffusion metrics on atlas-based white matter ROIs on the white matter skeleton. Despite the differences of MRI scanner configurations across sites (vendors, models, RF coils and acquisition sequences) we found good and consistent test-retest reproducibility. White matter b0 SNR reproducibility was on average 7±1 % with no significant MRI site effects. Whole brain analysis resulted in no significant test-retest differences at any of the sites with any of the DTI metrics. The atlas-based ROI analysis showed that the mean reproducibility errors largely remained in the range 2-4% for FA and AD and 2-6% for MD and RD, averaged across ROIs. Our results show reproducibility values comparable to those reported in studies using a smaller number of MRI scanners, slightly different DTI protocols and mostly younger populations. We therefore show that the acquisition and analysis protocol used are appropriate for multi-site experimental scenarios.
    NeuroImage 07/2014; DOI:10.1016/j.neuroimage.2014.06.075 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffusion tensor imaging (DTI) and tractography (DTT) provide a powerful vehicle for investigating motor recovery mechanisms. However, little is known about these mechanisms in patients with medullary lesions. We used DTI and DTT to evaluate three patients presenting with motor deficits following unilateral medulla infarct. Patients were scanned three times during 1 month (within 7, 14, and 30 days after stroke onset). Fractional anisotropy (FA) values were measured in the medulla, cerebral peduncle, and internal capsule. The three-dimensional corticospinal tract (CST) was reconstructed using DTT. Patients 1 and 2 showed good motor recovery after 14 days, and the FA values of their affected CST were slightly decreased. DTTs demonstrated that the affected CST passed along periinfarct areas and that tract integrity was preserved in the medulla. Patient 3 had the most obvious decrease in FA values along the affected CST, with motor deficits of the right upper extremity after 30 days. The affected CST passed through the infarct and was disrupted in the medulla. In conclusion, DTI can detect the involvement and changes of the CST in patients with medulla infarct during motor recovery. The degree of degeneration and spared periinfarct CST compensation may be an important motor recovery mechanism.
    BioMed Research International 05/2014; 2014:524096. DOI:10.1155/2014/524096 · 2.71 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many MRI parameters have been explored and demonstrated the capability or potential to evaluate acute stroke injury, providing anatomical, microstructural, functional, or neurochemical information for diagnostic purposes and therapeutic development. However, the application of multiparameter MRI approach is hindered in clinic due to the very limited time window after stroke insult. Parallel imaging technique can accelerate MRI data acquisition dramatically and has been incorporated in modern clinical scanners and increasingly applied for various diagnostic purposes. In the present study, a fast multiparameter MRI approach including structural T1-weighted imaging (T1W), T2-weighted imaging (T2W), diffusion tensor imaging (DTI), T2-mapping, proton magnetic resonance spectroscopy, cerebral blood flow (CBF), and magnetization transfer (MT) imaging, was implemented and optimized for assessing acute stroke injury on a 3T clinical scanner. A macaque model of transient ischemic stroke induced by a minimal interventional approach was utilized for evaluating the multiparameter MRI approach. The preliminary results indicate the surgical procedure successfully induced ischemic occlusion in the cortex and/or subcortex in adult macaque monkeys (n=4). Application of parallel imaging technique substantially reduced the scanning duration of most MRI data acquisitions, allowing for fast and repeated evaluation of acute stroke injury. Hence, the use of the multiparameter MRI approach with up to five quantitative measures can provide significant advantages in preclinical or clinical studies of stroke disease.
    04/2014; 4(2):112-22. DOI:10.3978/j.issn.2223-4292.2014.04.06