Article

Blunted activation in orbitofrontal cortex during mania: a functional magnetic resonance imaging study.

Department of Psychiatry, Los Angeles, California, USA.
Biological Psychiatry (Impact Factor: 9.47). 12/2005; 58(10):763-9. DOI: 10.1016/j.biopsych.2005.09.012
Source: PubMed

ABSTRACT Patients with bipolar disorder have been reported to have abnormal cortical function during mania. In this study, we sought to investigate neural activity in the frontal lobe during mania, using functional magnetic resonance imaging (fMRI). Specifically, we sought to evaluate activation in the lateral orbitofrontal cortex, a brain region that is normally activated during activities that require response inhibition.
Eleven manic subjects and 13 control subjects underwent fMRI while performing the Go-NoGo task, a neuropsychological paradigm known to activate the orbitofrontal cortex in normal subjects. Patterns of whole-brain activation during fMRI scanning were determined with statistical parametric mapping. Contrasts were made for each subject for the NoGo minus Go conditions. Contrasts were used in a second-level analysis with subject as a random factor.
Functional MRI data revealed robust activation of the right orbitofrontal cortex (Brodmann's area [BA] 47) in control subjects but not in manic subjects. Random-effects analyses demonstrated significantly less magnitude in signal intensity in the right lateral orbitofrontal cortex (BA 47), right hippocampus, and left cingulate (BA 24) in manic compared with control subjects.
Mania is associated with a significant attenuation of task-related activation of right lateral orbitofrontal function. This lack of activation of a brain region that is usually involved in suppression of responses might account for some of the disinhibition seen in mania. In addition, hippocampal and cingulate activation seem to be decreased. The relationship between this reduced function and the symptoms of mania remain to be further explored.

Full-text

Available from: Mark S Cohen, Jun 03, 2015
1 Follower
 · 
129 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In executive function, specifically in response inhibition, numerous studies support the essential role for the inferior frontal cortex (IFC). Hypoactivation of the IFC during response-inhibition tasks has been found consistently in subjects with bipolar disorder during manic and euthymic states. The aim of this study was to examine whether reduced IFC activation also exists in unmedicated subjects with bipolar disorder during the depressed phase of the disorder. Participants comprised 19 medication-free bipolar II (BP II) depressed patients and 20 healthy control subjects who underwent functional magnetic resonance imaging (fMRI) while performing a Go/NoGo response-inhibition task. Whole-brain analyses were conducted to assess activation differences within and between groups. The BP II depressed group, compared with the control group, showed significantly reduced activation in right frontal regions, including the IFC (Brodmann's area (BA) 47), middle frontal gyrus (BA 10), as well as other frontal and temporal regions. IFC hypoactivation may be a persistent deficit in subjects with bipolar disorder in both acute mood states as well as euthymia, thus representing a trait feature of bipolar disorder.
    Psychiatry Research Neuroimaging 11/2014; 231(3). DOI:10.1016/j.pscychresns.2014.11.005 · 2.83 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Youths with a family history of alcohol and other drug use disorders (FH+) are at a greater risk of developing substance use disorders than their peers with no such family histories (FH−), and this increased risk may be related to impaired maturation of forebrain circuitry. FH+ individuals have shown altered forebrain activity at rest and while performing cognitive tasks. However, it is not fully understood how forebrain activity is altered in FH+ individuals, and ultimately how these alterations may contribute to substance use disorder risk.Methods In this study, we tested 72 FH+ and 32 FH− youths performing a go/no-go task and examined activations in blocks with only go trials (Go Only), blocks with 50% go and 50% no-go trials (Go/NoGo), and a contrast of those 2 blocks.ResultsFH+ youths had significantly greater cerebral activations in both the Go and Go/NoGo blocks than FH− youths in regions including the posterior cingulate/precuneus, bilateral middle/superior temporal gyrus, and medial superior frontal gyrus with no significant group differences in the subtraction between Go Only and Go/NoGo blocks. Additionally, FH+ youths had moderately slower reaction times on go trials in the Go Only blocks.Conclusions Our findings suggest that global activation increase in FH+ youths are modulated by FH density and are not specific to the inhibitory components of the task. This pattern of increased activations in FH+ youths may be at least partially due to impaired forebrain white matter development leading to greater activations/less efficient neural communication during task performance.
    Alcoholism Clinical and Experimental Research 11/2014; 38(12). DOI:10.1111/acer.12571 · 3.31 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Little is known about how functional imaging changes in bipolar disorder relate to different phases of the illness. Aims To compare cognitive task activation in participants with bipolar disorder examined in different phases of illness. Method Participants with bipolar disorder in mania (n = 38), depression (n = 38) and euthymia (n = 38), as well as healthy controls (n = 38), underwent functional magnetic resonance imaging during performance of the n-back working memory task. Activations and de-activations were compared between the bipolar subgroups and the controls, and among the bipolar subgroups. All participants were also entered into a linear mixed-effects model. Results Compared with the controls, the mania and depression subgroups, but not the euthymia subgroup, showed reduced activation in the dorsolateral prefrontal cortex, the parietal cortex and other areas. Compared with the euthymia subgroup, the mania and depression subgroups showed hypoactivation in the parietal cortex. All three bipolar subgroups showed failure of de-activation in the ventromedial frontal cortex. Linear mixed-effects modelling revealed a further cluster of reduced activation in the left dorsolateral prefrontal cortex in the patients; this was significantly more marked in the mania than in the euthymia subgroup. Conclusions Bipolar disorder is characterised by mood state-dependent hypoactivation in the parietal cortex. Reduced dorsolateral prefrontal activation is a further feature of mania and depression, which may improve partially in euthymia. Failure of de-activation in the medial frontal cortex shows trait-like characteristics. Royal College of Psychiatrists.
    The British journal of psychiatry: the journal of mental science 12/2014; 206(2). DOI:10.1192/bjp.bp.114.152033 · 7.34 Impact Factor