Blunted Activation in Orbitofrontal Cortex During Mania: A Functional Magnetic Resonance Imaging Study

Department of Psychiatry, Los Angeles, California, USA.
Biological Psychiatry (Impact Factor: 10.26). 12/2005; 58(10):763-9. DOI: 10.1016/j.biopsych.2005.09.012
Source: PubMed


Patients with bipolar disorder have been reported to have abnormal cortical function during mania. In this study, we sought to investigate neural activity in the frontal lobe during mania, using functional magnetic resonance imaging (fMRI). Specifically, we sought to evaluate activation in the lateral orbitofrontal cortex, a brain region that is normally activated during activities that require response inhibition.
Eleven manic subjects and 13 control subjects underwent fMRI while performing the Go-NoGo task, a neuropsychological paradigm known to activate the orbitofrontal cortex in normal subjects. Patterns of whole-brain activation during fMRI scanning were determined with statistical parametric mapping. Contrasts were made for each subject for the NoGo minus Go conditions. Contrasts were used in a second-level analysis with subject as a random factor.
Functional MRI data revealed robust activation of the right orbitofrontal cortex (Brodmann's area [BA] 47) in control subjects but not in manic subjects. Random-effects analyses demonstrated significantly less magnitude in signal intensity in the right lateral orbitofrontal cortex (BA 47), right hippocampus, and left cingulate (BA 24) in manic compared with control subjects.
Mania is associated with a significant attenuation of task-related activation of right lateral orbitofrontal function. This lack of activation of a brain region that is usually involved in suppression of responses might account for some of the disinhibition seen in mania. In addition, hippocampal and cingulate activation seem to be decreased. The relationship between this reduced function and the symptoms of mania remain to be further explored.

Download full-text


Available from: Mark S Cohen,
  • Source
    • "In addition, we omitted rest blocks to save time, as a long experiment time would bore ADHD subjects. Furthermore, the go and go/no-go block design is commonly used in fMRI studies (Altshuler et al., 2005; Dillo et al., 2010; Ma et al., 2012; Vaidya et al., 1998). Thus, considering comparisons across modalities, the use of the go/no-go task paradigm in the current study is appropriate. "
    [Show abstract] [Hide abstract]
    ABSTRACT: While a growing body of neurocognitive research has explored the neural substrates associated with attention deficit hyperactive disorder (ADHD), an objective biomarker for diagnosis has not been established. The advent of functional near-infrared spectroscopy (fNIRS), which is a noninvasive and unrestrictive method of functional neuroimaging, raised the possibility of introducing functional neuroimaging diagnosis in young ADHD children. Previously, our fNIRS-based measurements successfully visualized the hypoactivation pattern in the right prefrontal cortex during a go/no-go task in ADHD children compared with typically developing control children at a group level. The current study aimed to explore a method of individual differentiation between ADHD and typically developing control children using multichannel fNIRS, emphasizing how spatial distribution and amplitude of hemodynamic response are associated with inhibition-related right prefrontal dysfunction. Thirty ADHD and thirty typically developing control children underwent a go/no-go task, and their cortical hemodynamics were assessed using fNIRS. We explored specific regions of interest (ROIs) and cut-off amplitudes for cortical activation to distinguish ADHD children from control children. The ROI located on the border of inferior and middle frontal gyri yielded the most accurate discrimination. Furthermore, we adapted well-formed formulae for the constituent channels of the optimized ROI, leading to improved classification accuracy with an area under the curve value of 85% and with 90% sensitivity. Thus, the right prefrontal hypoactivation assessed by fNIRS would serve as a potentially effective biomarker for classifying ADHD children at the individual level.
    Clinical neuroimaging 08/2015; 9:1-12. DOI:10.1016/j.nicl.2015.06.011 · 2.53 Impact Factor
  • Source
    • "We therefore focused exclusively on a mixed gender adult sample of BP II depressed subjects where results would be unconfounded by medication or heterogeneity of different bipolar subtypes. Based on findings in the literature (Hajek et al., 2013) and earlier research from our group pointing to reduced activation in the Brodmann area (BA) 47 region of the IFC during mania and euthymia (Altshuler et al., 2005; Townsend et al., 2012), we hypothesized that unmedicated depressed adults with BP II disorder would exhibit the same pattern of frontal lobe hypoactivation as seen in other mood states relative to control subjects. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In executive function, specifically in response inhibition, numerous studies support the essential role for the inferior frontal cortex (IFC). Hypoactivation of the IFC during response-inhibition tasks has been found consistently in subjects with bipolar disorder during manic and euthymic states. The aim of this study was to examine whether reduced IFC activation also exists in unmedicated subjects with bipolar disorder during the depressed phase of the disorder. Participants comprised 19 medication-free bipolar II (BP II) depressed patients and 20 healthy control subjects who underwent functional magnetic resonance imaging (fMRI) while performing a Go/NoGo response-inhibition task. Whole-brain analyses were conducted to assess activation differences within and between groups. The BP II depressed group, compared with the control group, showed significantly reduced activation in right frontal regions, including the IFC (Brodmann's area (BA) 47), middle frontal gyrus (BA 10), as well as other frontal and temporal regions. IFC hypoactivation may be a persistent deficit in subjects with bipolar disorder in both acute mood states as well as euthymia, thus representing a trait feature of bipolar disorder.
    Psychiatry Research: Neuroimaging 11/2014; 231(3). DOI:10.1016/j.pscychresns.2014.11.005 · 2.42 Impact Factor
  • Source
    • "Out of 37 papers in bipolar disorders with original data, we included 30 studies (Altshuler et al., 2005; Blumberg et al., 2003a, Table 1 Description of studies. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Impaired response inhibition underlies symptoms and altered functioning in patients with bipolar disorders (BD). The interpretation of fMRI studies requires an accurate estimation of neurocognitive performance, for which individual studies are typically underpowered. Thus, we performed the first combined meta-analysis of fMRI activations and neurocognitive performance in studies investigating response inhibition in BD. We used signed differential mapping to combine anatomical coordinates of activation and standardized differences between means to evaluate neurocognitive performance in 30 fMRI studies of response inhibition comparing controls (n = 667) and patients with BD (n = 635). Relative to controls, BD patients underactivated the right inferior frontal gyrus (rIFG) regardless of current mood state and behavioral performance. Unique to euthymia were cortical hyperactivations (left superior temporal, right middle frontal gyri) combined with subcortical hypoactivations (basal ganglia), whereas unique to mania were subcortical hyperactivations (bilateral basal ganglia), combined with cortical hypoactivations (right inferior and medial frontal gyri). The fMRI changes in euthymia were associated with normal cognitive performance, whereas manic patients committed more errors during response inhibition. The rIFG hypoactivations were congruent with a BD trait, which may underlie the impaired response inhibition in mania. Euthymic BD subjects may compensate for the rIFG hypoactivations by hyperactivations of adjacent cortical areas, yielding comparable performance in inhibitory functions and suggesting possibilities for neuromodulation treatment of these cognitive impairments. The reversal of the activation pattern between mania and euthymia has implications for monitoring of treatment response and identification of imminent relapse.
    Journal of Psychiatric Research 09/2013; 47(12). DOI:10.1016/j.jpsychires.2013.08.015 · 3.96 Impact Factor
Show more