Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice.

Diabetes Center, Department of Medicine, University of California, San Francisco 94143, USA.
Nature Immunology (Impact Factor: 24.97). 02/2006; 7(1):83-92. DOI: 10.1038/ni1289
Source: PubMed

ABSTRACT The in vivo mechanism of regulatory T cell (T(reg) cell) function in controlling autoimmunity remains controversial. Here we have used two-photon laser-scanning microscopy to analyze lymph node priming of diabetogenic T cells and to delineate the mechanisms of T(reg) cell control of autoimmunity in vivo. Islet antigen-specific CD4(+)CD25(-) T helper cells (T(H) cells) and T(reg) cells swarmed and arrested in the presence of autoantigens. These T(H) cell activities were progressively inhibited in the presence of increasing numbers of T(reg) cells. There were no detectable stable associations between T(reg) and T(H) cells during active suppression. In contrast, T(reg) cells directly interacted with dendritic cells bearing islet antigen. Such persistent T(reg) cell-dendritic cell contacts preceded the inhibition of T(H) cell activation by dendritic cells, supporting the idea that dendritic cells are central to T(reg) cell function in vivo.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In type 1 diabetes, the pancreatic islets are an important site for therapeutic intervention because immune infiltration of the islets is well established at diagnosis. Therefore, understanding the events that underlie the continued progression of the autoimmune response and islet destruction is critical. Islet infiltration and destruction is an asynchronous process, making it important to analyze the disease process on a single islet basis. To understand how T cell stimulation evolves through the process of islet infiltration, we analyzed the dynamics of T cell movement and interactions within individual islets of spontaneously autoimmune NOD mice. Using both intravital and explanted two-photon islet imaging, we defined a correlation between increased islet infiltration and increased T cell motility. Early T cell arrest was Ag dependent and due, at least in part, to Ag recognition through sustained interactions with CD11c(+) APCs. As islet infiltration progressed, T cell motility became Ag independent, with a loss of T cell arrest and sustained interactions with CD11c(+) APCs. These studies suggest that the autoimmune T cell response in the islets may be temporarily dampened during the course of islet infiltration and disease progression. Copyright © 2014 by The American Association of Immunologists, Inc.
    Journal of immunology (Baltimore, Md. : 1950). 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Interactions between dendritic cells (DCs) and T cells control the decision between activation and tolerance induction. Thromboxane A2 (TXA2) and its receptor TP have been suggested to regulate adaptive immune responses through control of T cell-DC interactions. Here, we show that this control is achieved by selectively reducing expansion of low-avidity CD4(+) T cells. During inflammation, weak tetramer-binding TP-deficient CD4(+) T cells were preferentially expanded compared with TP-proficient CD4(+) T cells. Using intravital imaging of cellular interactions in reactive peripheral lymph nodes (PLNs), we found that TXA2 led to disruption of low- but not high-avidity interactions between DCs and CD4(+) T cells. Lack of TP correlated with higher expression of activation markers on stimulated CD4(+) T cells and with augmented accumulation of follicular helper T cells (TFH), which correlated with increased low-avidity IgG responses. In sum, our data suggest that tonic suppression of weak CD4(+) T cell-DC interactions by TXA2-TP signaling improves the overall quality of adaptive immune responses. © 2014 Moalli et al.
    Journal of Experimental Medicine 12/2014; · 13.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulatory T cells are crucial in controlling various functions of effector T cells during experimental autoimmune encephalomyelitis. While regulatory T cells are reported to exert their immunomodulatory effects in the peripheral immune organs, their role within the central nervous system during experimental autoimmune encephalomyelitis is unclear. Here, by combining a selectively timed regulatory T cells depletion with 2-photon microscopy, we report that regulatory T cells exercise their dynamic control over effector T cells in the central nervous system. Acute depletion of regulatory T cells exacerbated experimental autoimmune encephalomyelitis severity which was accompanied by increased pro-inflammatory cytokine production and proliferation of effector T cells. Intravital microscopy revealed that, in the absence of regulatory T cells, the velocity of effector T cells was decreased with simultaneous increase in the proportion of stationary phase cells in the CNS. Based on these data, we conclude that regulatory T cells mediate recovery from experimental autoimmune encephalomyelitis by controlling effector T cells cytokine production, proliferation and motility in the CNS.
    Acta neuropathologica communications. 12/2014; 2(1):163.

Full-text (2 Sources)

Available from
May 23, 2014