Article

An unusual distribution of the kdr gene among populations of Anopheles gambiae on the island of Bioko, Equatorial Guinea.

Department of Entomology, University of California, Davis, CA 95616, USA.
Insect Molecular Biology (Impact Factor: 2.98). 01/2006; 14(6):683-8. DOI: 10.1111/j.1365-2583.2005.00599.x
Source: PubMed

ABSTRACT In West Africa, Anopheles gambiae exists in discrete subpopulations known as the M and S molecular forms. Although these forms occur in sympatry, pyrethroid knock-down resistance (kdr) is strongly associated with the S molecular form. On the island of Bioko, Equatorial Guinea we found high frequencies of the kdr mutation in M form individuals (55.8%) and a complete absence of kdr in the S form. We also report the absence of the kdr allele in M and S specimens from the harbour town of Tiko in Cameroon, representing the nearest continental population to Bioko. The kdr allele had previously been reported as absent in populations of An. gambiae on Bioko. Contrary to earlier reports, sequencing of intron-1 of this sodium channel gene revealed no fixed differences between M form resistant and susceptible individuals. The mutation may have recently arisen independently in the M form on Bioko due to recent and intensive pyrethroid application.

0 Followers
 · 
113 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Constant and extensive use of chemical insecticides has created a selection pressure and favored resistance development in many insect species worldwide. One of the most important pyrethroid resistance mechanisms is classified as target site insensitivity, due to conformational changes in the target site that impair a proper binding of the insecticide molecule. The voltage-gated sodium channel (NaV) is the target of pyrethroids and DDT insecticides, used to control insects of medical, agricultural and veterinary importance, such as anophelines. It has been reported that the presence of a few non-silent point mutations in the NaV gene are associated with pyrethroid resistance, termed as 'kdr' (knockdown resistance) for preventing the knockdown effect of these insecticides. The presence of these mutations, as well as their effects, has been thoroughly studied in Anopheles mosquitoes. So far, kdr mutations have already been detected in at least 13 species (Anopheles gambiae, Anopheles arabiensis, Anopheles sinensis, Anopheles stephensi, Anopheles subpictus, Anopheles sacharovi, Anopheles culicifacies, Anopheles sundaicus, Anopheles aconitus, Anopheles vagus, Anopheles paraliae, Anopheles peditaeniatus and Anopheles albimanus) from populations of African, Asian and, more recently, American continents. Seven mutational variants (L1014F, L1014S, L1014C, L1014W, N1013S, N1575Y and V1010L) were described, with the highest prevalence of L1014F, which occurs at the 1014 site in NaV IIS6 domain. The increase of frequency and distribution of kdr mutations clearly shows the importance of this mechanism in the process of pyrethroid resistance. In this sense, several species-specific and highly sensitive methods have been designed in order to genotype individual mosquitoes for kdr in large scale, which may serve as important tolls for monitoring the dynamics of pyrethroid resistance in natural populations. We also briefly discuss investigations concerning the course of Plasmodium infection in kdr individuals. Considering the limitation of insecticides available for employment in public health campaigns and the absence of a vaccine able to brake the life cycle of the malaria parasites, the use of pyrethroids is likely to remain as the main strategy against mosquitoes by either indoor residual spraying (IR) and insecticide treated nets (ITN). Therefore, monitoring insecticide resistance programs is a crucial need in malaria endemic countries.
    Parasites & Vectors 10/2014; 7(1):450. DOI:10.1186/1756-3305-7-450 · 3.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Las garrapatas forman parte de un complejo en el cual participan, como vectores de enfermedades, que no solo afectan al ganado, sino que le causan eventualmente la muerte, debido a los efectos directos ocasionados por la conducta hematófaga de este artrópodo, y por los efectos indirectos producidos por las enfermedades transmitidas por el vector, lo cual invariablemente se refleja en los altos costos de producción, debidos al uso constante de parasiticidas para controlar tanto a las garrapatas como a las enfermedades que transmiten. Por esta razón, y en este renglón en particular, gracias a la entusiasta y desinteresada colaboración de cada uno de los participantes en este simposio, y la de la Sociedad Mexicana de Entomología, las instituciones participantes, como el Comité de Parasiticidas, El Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, la Universidad Autónoma de Guerrero y la Fundación Produce Guerrero A.C., han conjuntado esfuerzos e invertido un tiempo valioso para contribuir con el desarrollo de la ganadería nacional, y con la difusión de los avances tecnológicos más novedosos en esta área del conocimiento, en la cual, cada uno de los ponentes, han hecho aportaciones importantes, que han contribuido a la comprensión de los mecanismos moleculares responsables de la resistencia a las diferentes familias de pesticidas en este vector, con la meta final de generar la infraestructura diagnóstica que nos permita predecir la aparición de la resistencia y mitigar sus efectos a partir de la aplicación de estos conocimientos básicos, aplicados en el campo, logrando con esto, regresar los conocimientos a los productores que con su trabajo han hecho posible la realización de este tipo de investigaciones. Con este propósito en mente, este libro, pretende poner al alcance de científicos, académicos, estudiantes, técnicos y agentes de cambio de nuestro país la información sistematizada y actualizada de este esfuerzo colectivo de investigación con el fin de desarrollar nuevas tecnologías diagnósticas que nos permitan de manera masiva estudiar la resistencia desde el punto de vista de la Epidemiología Molecular, con el propósito final de generar opciones diagnósticas rápidas y confiables
    DIAGNOSTICO MOLECULAR DE LA RESISTENCIA A LOS PIRETROIDES EN LA GARRAPATA B. MICROPLUS EN MEXICO, mANZANILLO cOLIMA; 05/2006
  • [Show abstract] [Hide abstract]
    ABSTRACT: Each year, ~300,000 individuals with sickle cell disease (SCD), a hemoglobinopathy caused by β‑globin gene mutation, are born, and >75% of those are in Africa. The present study examined 511 individuals on the island of Bioko (Equatorial Guinea) and attempted to establish a method for rapid sickle cell disease screening. Following DNA extraction and polymerase chain reaction (PCR) amplification, high resolution melting (HRM) analysis was used to assess the specificity of fluorescence signals of the PCR products and to differentiate various genotypes of these products. The analytical results of HRM were validated using DNA sequencing. By HRM analysis, 80 out of 511 samples were classified as hemoglobin S (Hb S) heterozygotes, while 431 out of 511 samples were classified as wild‑type. No mutant homozygote was identified. DNA sequencing indicated that within the 431 wild‑type samples as indicated by HRM analysis, one case was actually a Hb S heterozygote and another case was a rare hemoglobin S‑C genotype (sickle‑hemoglobin C disease). One out of 80 suspected Hb S heterozygotes as indicated by HRM was confirmed as wild-type by DNA sequencing and the results of residual 508 cases were consistent for HRM analysis and sequencing. In conclusion, HRM analysis is a simple, high‑efficiency approach for Hb S screening and is useful for early diagnosis of SCD and particularly suitable for application in the African area.
    Molecular Medicine Reports 04/2014; 9(6). DOI:10.3892/mmr.2014.2130 · 1.48 Impact Factor

Full-text (2 Sources)

Download
35 Downloads
Available from
May 23, 2014