Molecular tuning of fast gating in pentameric ligand-gated ion channels.

Laboratoire Récepteurs et Cognition, Institut Pasteur, Paris, France.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2006; 102(50):18207-12. DOI: 10.1073/pnas.0509024102
Source: PubMed

ABSTRACT Neurotransmitters such as acetylcholine (ACh) and glycine mediate fast synaptic neurotransmission by activating pentameric ligand-gated ion channels (LGICs). These receptors are allosteric transmembrane proteins that rapidly convert chemical messages into electrical signals. Neurotransmitters activate LGICs by interacting with an extracellular agonist-binding domain (ECD), triggering a tertiary/quaternary conformational change in the protein that results in the fast opening of an ion pore domain (IPD). However, the molecular mechanism that determines the fast opening of LGICs remains elusive. Here, we show by combining whole-cell and single-channel recordings of recombinant chimeras between the ECD of alpha7 nicotinic receptor (nAChR) and the IPD of the glycine receptor (GlyR) that only two GlyR amino acid residues of loop 7 (Cys-loop) from the ECD and at most five alpha7 nAChR amino acid residues of the M2-M3 loop (2-3L) from the IPD control the fast activation rates of the alpha7/Gly chimera and WT GlyR. Mutual interactions of these residues at a critical pivot point between the agonist-binding site and the ion channel fine-tune the intrinsic opening and closing rates of the receptor through stabilization of the transition state of activation. These data provide a structural basis for the fast opening of pentameric LGICs.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Pentameric ligand-gated ion channels (pLGICs) mediate fast synaptic communication by converting chemical signals into an electrical response. Recently solved agonist-bound and agonist-free structures greatly extend our understanding of these complex molecular machines. A key challenge to a full description of function, however, is the ability to unequivocally relate determined structures to the canonical resting, open, and desensitized states. Here, we review current understanding of pLGIC structure, with a focus on the conformational changes underlying channel gating. We compare available structural information and review the evidence supporting the assignment of each structure to a particular conformational state. We discuss multiple factors that may complicate the interpretation of crystal structures, highlighting the potential influence of lipids and detergents. We contend that further advances in the structural biology of pLGICs will require deeper insight into the nature of pLGIC-lipid interactions.
    Structure 08/2013; 21(8):1271-83. · 5.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The nicotinic acetylcholine (ACh) receptor, at the neuromuscular junction, is a neurotransmitter-gated ion channel that has been fine-tuned through evolution to transduce a chemical signal into an electrical signal with maximum efficiency and speed. It is composed from three similar and two identical polypeptide chains, arranged in a ring around a narrow membrane pore. Central to the design of this assembly is a hydrophobic gate in the pore, more than 50 Å away from sites in the extracellular domain where ACh binds. Although the molecular properties of the receptor have been explored intensively over the last few decades, only recently have structures emerged revealing its complex architecture and illuminating how ACh entering the binding sites opens the distant gate. Postsynaptic membranes isolated from the (muscle-derived) electric organ of the Torpedo ray have underpinned most of the structural studies: the membranes form tubular vesicles having receptors arranged on a regular surface lattice, which can be imaged directly in frozen physiological solutions. Advances in electron crystallographic techniques have also been important, enabling analysis of the closed- and open-channel forms of the receptor in unreacted tubes or tubes reacted briefly with ACh. The structural differences between these two forms show that all five subunits participate in a concerted conformational change communicating the effect of ACh binding to the gate, but that three of them (αγ, β and δ) play a dominant role. Flexing of oppositely facing pore-lining α-helices is the principal motion determining the closed/open state of the gate. These results together with the findings of biochemical, biophysical and other structural studies allow an integrated description of the receptor and of its mode of action at the synapse.
    Quarterly Reviews of Biophysics 09/2013; · 11.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cys-loop receptors are ligand-gated ion channels that are activated by a structurally diverse array of neurotransmitters, including acetylcholine, serotonin, glycine, and GABA. After the term "chemoreceptor" emerged over 100 years ago, there was some wait until affinity labeling, molecular cloning, functional studies, and X-ray crystallography experiments identified the extracellular interface of adjacent subunits as the principal site of agonist binding. The question of how subtle differences at and around agonist-binding sites of different Cys-loop receptors can accommodate transmitters as chemically diverse as glycine and serotonin has been subject to intense research over the last three decades. This review outlines the functional diversity and current structural understanding of agonist-binding sites, including those of invertebrate Cys-loop receptors. Together, this provides a framework to understand the atomic determinants involved in how these valuable therapeutic targets recognize and bind their ligands.
    Frontiers in Physiology 01/2014; 5:160.

Full-text (2 Sources)

Available from
Jun 2, 2014