Effect of intermittent hypoxia on oxygen uptake during submaximal exercise in endurance athletes.

Research Center of Health, Physical Fitness and Sports, Nagoya University, Nagoya 464-8601, Japan.
Arbeitsphysiologie (Impact Factor: 2.66). 07/2004; 92(1-2):75-83. DOI: 10.1007/s00421-004-1054-0
Source: PubMed

ABSTRACT The purpose of the present study was to clarify the following: (1) whether steady state oxygen uptake (VO(2)) during exercise decreases after short-term intermittent hypoxia during a resting state in trained athletes and (2) whether the change in VO(2) during submaximal exercise is correlated to the change in endurance performance after intermittent hypoxia. Fifteen trained male endurance runners volunteered to participate in this study. Each subject was assigned to either a hypoxic group (n=8) or a control group (n=7). The hypoxic group spent 3 h per day for 14 consecutive days in normobaric hypoxia [12.3 (0.2)% inspired oxygen]. The maximal and submaximal exercise tests, a 3,000-m time trial, and resting hematology assessments at sea level were conducted before and after intermittent normobaric hypoxia. The athletes in both groups continued their normal training in normoxia throughout the experiment. VO(2) during submaximal exercise in the hypoxic group decreased significantly (P<0.05) following intermittent hypoxia. In the hypoxic group, the 3,000-m running time tended to improve (P=0.06) after intermittent hypoxia, but not in the control group. Neither peak VO(2) nor resting hematological parameters were changed in either group. There were significant (P<0.05) relationships between the change in the 3,000-m running time and the change in VO(2) during submaximal exercise after intermittent hypoxia. The results from the present study suggest that the enhanced running economy resulting from intermittent hypoxia could, in part, contribute to improved endurance performance in trained athletes.

1 Bookmark
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The aim of the present study was to evaluate the efficacy of 3-week high intensity interval training in normobaric hypoxia (IHT) on aerobic capacity in basketball players. Twelve male well trained basketball players, randomly divided into a hypoxia (H) group (n=6; age: 22±1.6 years; VO2max: 52.6±3.9 ml/kg/min; body height - BH: 188.8±6.1 cm; body mass - BM: 83.9±7.2 kg; % of body fat - FAT%: 11.2±3.1%), and a control (C) group (n=6; age: 22±2.4 years; VO2max: 53.0±5.2 ml/kg/min; BH: 194.3 ± 6.6 cm; BM: 99.9±11.1 kg; FAT% 11.0±2.8 %) took part in the study. The training program applied during the study was the same for both groups, but with different environmental conditions during the selected interval training sessions. For 3 weeks, all subjects performed three high intensity interval training sessions per week. During the interval training sessions, the H group trained in a normobaric hypoxic chamber at a simulated altitude of 2500 m, while the group C performed interval training sessions under normoxia conditions also inside the chamber. Each interval running training sessions consisted of four to five 4 min bouts at 90% of VO2max velocity determined in hypoxia (vVO2max-hyp) for the H group and 90% of velocity at VO2max determined in normoxia for the group C. The statistical post-hoc analysis showed that the training in hypoxia caused a significant (p<0.001) increase (10%) in total distance during the ramp test protocol (the speed was increased linearly by 1 km/h per 1min until volitional exhaustion), as well as increased (p<0.01) absolute (4.5%) and relative (6.2%) maximal workload (WRmax). Also, the absolute and relative values of VO2max in this group increased significantly (p<0.001) by 6.5% and 7.8%. Significant, yet minor changes were also observed in the group C, where training in normoxia caused an increase (p<0.05) in relative values of WRmax by 2.8%, as well as an increase (p<0.05) in the absolute (1.3%) and relative (2.1%) values of VO2max. This data suggest that an intermittent hypoxic training protocol with high intensity intervals (4 to 5 × 4 min bouts at 90% of vVO2max-hyp) is an effective training means for improving aerobic capacity at sea level in basketball players.
    Journal of Human Kinetics 12/2013; 39:103-14. · 0.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The syndrome of high-altitude de-acclimatization commonly takes place after long-term exposure to high altitudes upon return to low altitudes. The syndrome severely affects the returnee's quality of life. However, little attention has been paid to careful characterization of the syndrome and their underlying mechanisms. Male subjects from Chongqing (n = 67, 180 m) and Kunming (n = 70, 1800 m) visited a high-altitude area (3650 m) about 6 months and then returned to low-altitude. After they came back, all subjects were evaluated for high-altitude de-acclimatization syndrome on the 3(rd), 50(th), and 100(th). Symptom scores, routine blood and blood gas tests, and myocardial zymograms assay were used for observation their syndrome. The results showed that the incidence and severity of symptoms had decreased markedly on the 50(th) and 100(th) days, compared with the 3(rd) day. The symptom scores and incidence of different symptoms were lower among subjects returning to Kunming than among those returning to Chongqing. On the 3(rd) day, RBC, Hb, Hct, CK, CK-MB, and LDH values were significantly lower than values recorded at high altitudes, but they were higher than baseline values. On the 50(th) day, these values were not different from baseline values, but LDH levels did not return to baseline until the 100(th) day. These data show that, subjects who suffered high-altitude de-acclimatization syndrome, the recovery fully processes takes a long time (≥100(th) days). The appearance of the syndrome is found to be related to the changes in RBC, Hb, Hct, CK, CK-MB, and LDH levels, which should be caused by reoxygenation after hypoxia.
    PLoS ONE 01/2013; 8(5):e62072. · 3.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Different hypoxic training modalities have become a common addition to endurance athletes’ training during the last few decades. Recently, technological advancements allowing for the simple simulation of altitude exposure by employing normobaric hypoxia have led to an even greater increase in their utilisation. It has been suggested that, besides classical hypoxic protocols employing longer exposures (> 12 h∙day-1), performance can also be enhanced by intermittent protocols utilising shorter daily exposures (< 6 h∙day-1) either at rest or combined with exercise. Even though the latest study findings regarding their influence on improved performance are ambiguous, they are habitually used in elite and recreational sport, chiefly due to their convenience and simple application. This short review will focus on currently used hypoxic training modalities with special reference to the effects of protocols utilising short exposures on performance at sea level and altitude. Moreover, the main underlying physiological mechanisms that can lead to improved performance following protocols utilising short hypoxic exposures will be reviewed. We will also examine the individual variability in response to hypoxic stimuli and possible combinations of hypoxic modalities for enhancing performance following hypoxia manipulations. The cumulative body of knowledge, as reviewed in this paper, does not indicate a robust improvement in performance as a consequence of short intermittent exposures in normobaric hypoxia. However, beneficial adaptations can be anticipated in some athletes and an individualised approach is thus warranted.
    Kinesiologia Slovenica. 02/2014; 19(3):5-28..