In situ measurements of the physical characteristics of Titan's environment.

LESIA, Observatoire de Paris, 5 Place Janssen, 92195 Meudon, France. [2
Nature (Impact Factor: 42.35). 01/2006; 438(7069):785-91. DOI: 10.1038/nature04314
Source: PubMed

ABSTRACT On the basis of previous ground-based and fly-by information, we knew that Titan's atmosphere was mainly nitrogen, with some methane, but its temperature and pressure profiles were poorly constrained because of uncertainties in the detailed composition. The extent of atmospheric electricity ('lightning') was also hitherto unknown. Here we report the temperature and density profiles, as determined by the Huygens Atmospheric Structure Instrument (HASI), from an altitude of 1,400 km down to the surface. In the upper part of the atmosphere, the temperature and density were both higher than expected. There is a lower ionospheric layer between 140 km and 40 km, with electrical conductivity peaking near 60 km. We may also have seen the signature of lightning. At the surface, the temperature was 93.65 +/- 0.25 K, and the pressure was 1,467 +/- 1 hPa.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Saturn's moons, Titan and Enceladus, are two of the Solar System's most enigmatic bodies and are prime targets for future space exploration. Titan provides an analogue for many processes relevant to the Earth, more generally to outer Solar System bodies, and a growing host of newly discovered icy exoplanets. Processes represented include atmospheric dynamics, complex organic chemistry, meteorological cycles (with methane as a working fluid), astrobiology, surface liquids and lakes, geology, fluvial and aeolian erosion, and interactions with an external plasma environment. In addition, exploring Enceladus over multiple targeted flybys will give us a unique opportunity to further study the most active icy moon in our Solar System as revealed by Cassini and to analyse in situ its active plume with highly capable instrumentation addressing its complex chemistry and dynamics. Enceladus' plume likely represents the most accessible samples from an extra-terrestrial liquid water environment in the Solar system, which has far reaching implications for many areas of planetary and biological science. Titan with its massive atmosphere and Enceladus with its active plume are prime planetary objects in the Outer Solar System to perform in situ investigations. In the present paper, we describe the science goals and key measurements to be performed by a future exploration mission involving a Saturn-Titan orbiter and a Titan balloon, which was proposed to ESA in response to the call for definition of the science themes of the next Large-class mission in 2013. The mission scenario is built around three complementary science goals: (A) Titan as an Earth-like system; (B) Enceladus as an active cryovolcanic moon; and
    Planetary and Space Science 12/2014; 104, Part A:59-77. DOI:10.1016/j.pss.2014.10.002 · 1.63 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: We analyzed spectra acquired at the limb of Titan in the 2006–2013 period by the Cassini/Composite Infrared Spectrometer (CIRS) in order to monitor the seasonal evolution of the thermal, gas composition and aerosol spatial distributions. We are primarily interested here in the seasonal changes after the northern spring equinox and interpret our results in term of global circulation seasonal changes. Data cover the 600–1500 cm−1 spectral range at a resolution of 0.5 or 15.5 cm−1 and probe the 150–500 km vertical range with a vertical resolution of about 30 km. Retrievals of the limb spectra acquired at 15.5 cm−1 resolution allowed us to derive eight global maps of temperature, aerosols and C2H2, C2H6 and HCN molecular mixing ratios between July 2009 and May 2013. In order to have a better understanding of the global changes taking place after the northern spring equinox, we analyzed 0.5 cm−1 resolution limb spectra to infer the mixing ratio profiles of 10 molecules for some latitudes. These profiles are compared with CIRS observations performed during the northern winter. Our observations are compatible with the coexistence of two circulation cells upwelling at mid-latitudes and downwelling at both poles from at last January 2010 to at least June 2010. One year later, in June 2011, there are indications that the global circulation had reversed compared to the winter situation, with a single pole-to-pole cell upwelling at the north pole and downwelling at the south pole. Our observations show that in December 2011, this new pole-to-pole cell has settled with a downward velocity of 4.4 mm/s at 450 km above the south pole. Therefore, in about two years after the equinox, the global circulation observed during the northern winter has totally reversed, which is in agreement with the predictions of general circulation models. We observe a sudden unexpected temperature decrease above the south pole in February 2012, which is probably related to the strong enhancement of molecular gas in this region, acting as radiative coolers. In July and November 2012, we observe a detached haze layer located around 320–330 km, which is comparable to the altitude of the detached haze layer observed by the Cassini Imaging Science Subsystem (ISS) in the UV.
    Icarus 04/2015; 250. DOI:10.1016/j.icarus.2014.11.019 · 2.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Theoretical self-broadening coefficients and associated temperature dependences for methyl cyanide lines in parallel (ΔK = 0) bands are reported for large ranges of rotational quantum numbers (0 ⩽ J ⩽ 70, K ⩽ 20) requested by spectroscopic databases. The calculations are performed by a semi-empirical method, particularly suitable for active molecules with large dipole moments, which needs only a few experimental data for model parameters fitting. Since the common power law for the temperature-dependence exponents is invalid for wide temperature ranges, two separate sets of temperature exponents are provided for Earth and Titan atmospheres applications.
    Icarus 04/2015; 250. DOI:10.1016/j.icarus.2014.11.020 · 2.84 Impact Factor

Full-text (2 Sources)

Available from
May 28, 2014