Article

Several-fold increase in risk of overanticoagulation by CYP2C9 mutations

Division of Clinical Pharmacology, Department of Laboratory Medicine, Institute of Environmental Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden.
Clinical Pharmacology &#38 Therapeutics (Impact Factor: 7.39). 12/2005; 78(5):540-50. DOI: 10.1016/j.clpt.2005.08.006
Source: PubMed

ABSTRACT Our objective was to prospectively study the impact of CYP2C9 polymorphism (*2 and *3) on the risk of overanticoagulation during the induction phase of warfarin therapy.
Blood samples for genotyping were collected from 219 patients requiring warfarin therapy, and clinical data were prospectively collected during the first 3 weeks of medication. Patients were divided into 3 groups according to CYP2C9 genotype, as follows: *1 (homozygous), *2 (*1/*2 and *2/*2), and *3 (any genotype containing the *3 allele).
During the first week of treatment, the relative risk of achieving at least 1 international normalized ratio (INR) value above the therapeutic interval (2-3) was 2.8 (95% confidence interval, 1.2-6.7) and 6.1 (2.7-13.6) in the *2 and *3 groups, respectively (with *1 used as control). During the second week, the corresponding values were 2.1 (1.2-3.7) and 3.5 (2.1-5.8), respectively. By the third week, the genetic impact was no longer evident, presumably as a result of successful dose individualization. Increased INR levels (compared with the *1 group) were already demonstrated in the *2 group on the fourth treatment day.
The CYP2C9*2 and *3 single-nucleotide polymorphisms significantly increase the risk of overanticoagulation during the first 2 weeks of warfarin treatment, with increased INR levels evident after only 4 days' treatment in *2 carriers. Our prospective data are consistent with results from previous retrospective studies and indicate that CYP2C9 genotyping may be a means of improving safety during warfarin induction.

0 Followers
 · 
96 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To determine whether genetic variants associated with warfarin dose variability were associated with increased risk of major bleeding during warfarin therapy. Using Vanderbilt's DNA biobank we compared the prevalence of CYP2C9, VKORC1 and CYP4F2 variants in 250 cases with major bleeding and 259 controls during warfarin therapy. CYP2C9*3 was the only allele that differed significantly among cases (14.2%) and controls (7.8%; p = 0.022). In the 214 (85.6%) cases with a major bleed 30 or more days after warfarin initiation, CYP2C9*3 was the only variant associated with bleeding (adjusted odds ratio: 2.05; 95% CI: 1.04, 4.04). The CYP2C9*3 allele may double the risk of major bleeding among patients taking warfarin for 30 or more days.
    Pharmacogenomics 12/2014; 15(16):1973-83. DOI:10.2217/pgs.14.153 · 3.43 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Warfarin was introduced more than 60 years ago and is used worldwide for the prophylaxis of arterial and venous thromboembolism in primary and secondary prevention. The drug is orally administered as a racemic mixture of (R)- and (S)-enantiomers. The (S)-form is mainly responsible for the anticoagulant effect and is metabolised by CYP2C9 enzyme in the liver microsomes. Warfarin exerts its pharmacological action by inhibiting the key enzyme (VKORC1) that regenerates vitamin K from an oxidised state to a reduced form. The latter is a cofactor for the post-translational modification of a number of proteins including coagulation factors II, VII, IX and X. The vitamin K-dependent modification provides these factors with the calcium-binding ability they require for the interaction with cell membranes of their target cells such as platelets. Warfarin is monitored by measuring prothrombin time (PT) expressed as INR. Two main methods exist for PT analysis. The Owren method is used mainly in the Nordic and Baltic countries, in Japan, whereas the Quick method is employed in most other countries. Warfarin management is associated with some complications. Unlike many other drugs the dose for a given patient cannot be estimated beforehand, dose-response relationship is not predictable, and the prevention of thrombosis must be balanced against the risk of bleeding. Furthermore, the different PT methods used to monitor the drug are sometimes not in agreement and show significant discrepancies in results. In an attempt to clarify the mechanisms influencing the inter-individual variations in warfarin therapy and to detect the factors that contribute to differences between PT methods, studies were conducted in collaboration with hospitals and anticoagulation clinics in the south-eastern region of Sweden. First, a stereo-specific HPLC method for measurement of warfarin enantiomers was developed and validated. With this method, the levels of plasma warfarin following its oral administration can be studied and evaluated. Abnormal clearance in some patients can be detected, and patient compliance can be verified. Furthermore, differing ratios of (S)- and (R)- isomers can be identified. The impact of common VKORC1 polymorphisms on warfarin therapy was investigated. This study has shown that the VKORC1*2 haplotype is an important genetic determinant for warfarin dosage and is associated with difficulties in attaining and retaining therapeutic PT-INR. Further, significant differences in warfarin S/R-ratio was detected between patients with VKORC1*2 and VKORC1*3 or VKORC1*4 variants. This difference was not coupled with CYP2C9 genotype. The effects of predilution of patient plasma samples, sources of thromboplastin and deficient plasma on between PT methods agreement were studied. This study has revealed that sample predilution according to the Owren method is to be preferred for the harmonisation of PT results. Undiluted samples, in contrast, according to the Quick method have shown reduced correlation between two different thromboplastin reagents. Sources of thromboplastin and deficient plasma were only of minor importance.
    06/2007, Degree: PhD