Convergence of vitamin D and retinoic acid signalling at a common hormone response element.

Department of Medicine, McGill University, 3655 Drummond St, Montreal, Quebec, Canada H3G 1Y6.
EMBO Reports (Impact Factor: 7.86). 03/2006; 7(2):180-5. DOI: 10.1038/sj.embor.7400594
Source: PubMed

ABSTRACT Although 1,25-dihydroxyvitamin D3 (1,25D3) and retinoic acid (RA) have distinct developmental and physiological roles, both regulate the cell cycle. We provide molecular and genomic evidence that their cognate nuclear receptors regulate common genes through everted repeat TGA(C/T)TPyN8PuG(G/T)TCA (ER8) response elements. ER8 motifs were found in the promoters of several target genes of 1,25D3 and/or RA. Notably, an element was characterized in the cyclin-dependent kinase (CDK) inhibitor p19ink4d gene, and 1,25D3- or RA-induced p19INK4D) expression. P19ink4d knockdown together with depletion of p27kip1, another CDK inhibitor regulated by 1,25D3 and RA, rendered cells resistant to ligand-induced growth arrest. Remarkably, p19INK4D-deficient cells showed increased autophagic cell death, which was markedly enhanced by 1,25D3, but not RA, and attenuated by loss of p27KIP1. These results show a limited crosstalk between 1,25D3 and RA signalling by means of overlapping nuclear receptor DNA binding specificities, and uncover a role for p19INK4D in control of cell survival.

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Uncontrolled cell cycle entry, resulting from deregulated CDK-RB1-E2F pathway activity, is a crucial determinant of neuroblastoma cell malignancy. Here we identify neuroblastoma-suppressive functions of the p19-INK4d CDK inhibitor and uncover mechanisms of its repression in high-risk neuroblastomas. Reduced p19-INK4d expression was associated with poor event-free and overall survival and neuroblastoma risk factors including amplified MYCN in a set of 478 primary neuroblastomas. High MYCN expression repressed p19-INK4d mRNA and protein levels in different neuroblastoma cell models with conditional MYCN expression. MassARRAY and 450 K methylation analyses of 105 primary neuroblastomas uncovered a differentially methylated region within p19-INK4d. Hypermethylation of this region was associated with reduced p19-INK4d expression. In accordance, p19-INK4d expression was activated upon treatment with the demethylating agent, 2'-deoxy-5-azacytidine, in neuroblastoma cell lines. Ectopic p19-INK4d expression decreased viability, clonogenicity and the capacity for anchorage-independent growth of neuroblastoma cells, and shifted the cell cycle towards the G1/0 phase. p19-INK4d also induced neurite-like processes and markers of neuronal differentiation. Moreover, neuroblastoma cell differentiation, induced by all-trans retinoic acid or NGF-NTRK1-signaling, activated p19-INK4d expression. Our findings pinpoint p19-INK4d as a neuroblastoma suppressor and provide evidence for MYCN-mediated repression and for epigenetic silencing of p19-INK4d by DNA hypermethylation in high-risk neuroblastomas.
    Human Molecular Genetics 08/2014; 23(25). DOI:10.1093/hmg/ddu406 · 6.68 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell proliferation and differentiation are highly coordinated processes. These two processes are disrupted during leukemogenesis, resulting in differentiation block and uncontrolled proliferation in leukemia. To understand the mechanisms disrupting the coordination between the two processes in acute promyelocytic leukemia (APL), we investigated the regulatory mechanism of the negative cell cycle regulator CDKN2D by the promyelocytic leukemia/retinoic acid receptor α (PML/RARα) fusion protein and the role of CDKN2D in cell differentiation and proliferation. We found that CDKN2D expression in APL cells was significantly lower than that in normal promyelocytes. By chromatin immunoprecipitation and luciferase reporter assays, we showed that PML/RARα directly bound to and inhibited the transactivation of the CDKN2D promoter. Further evidence by the truncated and mutated CDKN2D promoters revealed that the everted repeat 8 (ER8) motif on the promoter was the binding site of PML/RARα. Forced expression of CDKN2D induced G0/G1 phase arrest and partial granulocytic differentiation in APL-derived NB4 cells, suggesting the function of CDKN2D in regulating both cell proliferation and granulocytic differentiation. Furthermore, all-trans retinoic acid (ATRA) significantly induced CDKN2D expression in APL cells and knockdown of CDKN2D expression during ATRA treatment partially blocked the ATRA-induced differentiation and cell cycle arrest. Collectively, our data indicate that CDKN2D repression by PML/RARα disrupts both cell proliferation and differentiation in the pathogenesis of APL, and induced expression of CDKN2D by ATRA alleviates the disruption of both processes to ensure treatment efficiency. This study provides a mechanism for coupling proliferation and differentiation in leukemic cells through the action of CDKN2D.
    Cell Death & Disease 10/2014; 5:e1431. DOI:10.1038/cddis.2014.388 · 5.18 Impact Factor

Full-text (2 Sources)

Available from
May 19, 2014