Abiotic source of reactive organic halogens in the sub-arctic atmosphere?

Department of Chemistry, University of York, York YO10 5DD, UK.
Environmental Science and Technology (Impact Factor: 5.26). 12/2005; 39(22):8812-6. DOI: 10.1021/es050918w
Source: PubMed

ABSTRACT Recent theoretical studies indicate that reactive organic iodocarbons such as CH2I2 would be extremely effective agents for tropospheric Arctic ozone depletion and that iodine compounds added to a Br2/BrCl mixture have a significantly greater ozone (and mercury) depletion effect than additional Br2 and BrCl molecules. Here we report the first observations of CH2I2, CH2IBr, and CH2ICl in Arctic air, as well as other reactive halocarbons including CHBr3, during spring at Kuujjuarapik, Hudson Bay. The organoiodine compounds were present atthe highest levels yet reported in air. The occurrence of the halocarbons was associated with northwesterly winds from the frozen bay, and, in the case of CHBr3, was anticorrelated with ozone and total gaseous mercury (TGM), suggesting a link between inorganic and organic halogens. The absence of local leads coupled with the extremely short atmospheric lifetime of CH2I2 indicates that production occurred in the surface of the sea-ice/overlying snowpack over the bay. We propose an abiotic mechanism for the production of polyhalogenated iodo- and bromocarbons, via reaction of HOI and/or HOBr with organic material on the quasi-liquid layer above sea-ice/snowpack, and report laboratory data to support this mechanism. CH2I2, CH2IBr, and other organic iodine compounds may therefore be a ubiquitous component of air above sea ice where they will increase the efficiency of bromine-initiated ozone and mercury depletion.

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present surface layer measurements made over Hudson Bay sea ice during February/March 2008 from the COBRA (Impact of combined iodine and bromine release on the Arctic atmosphere) experiment which formed part of the International OASIS (Ocean-Atmosphere-Sea Ice-Snowpack) IPY programme. All components of the local surface energy balance were measured and it was defined by net radiative cooling throughout most of the day, mainly balanced by the conductive heat flux from the warmer sea water to the cooler sea ice at the surface, and a small net radiative warming for a few hours after midday. Unique ground-level ozone fluxes were measured by eddy covariance and deposition velocities ranged from +0.5 mm s−1 (deposition) to −1.5 mm s−1 (emission). Ozone profile measurements suggested ozone flux divergence within the surface layer. The observed bi-directional fluxes and flux divergence with height reveal the complexity of surface ozone fluxes in the Arctic spring time surface layer, and show that ozone exchange with the sea ice surface is best probed using the eddy covariance method alongside frequent or continuous profile measurements. In this study, the local in-situ ozone-halogen photochemistry was identified as weakly controlling the measured ozone flux, whereas horizontal advection and vertical mixing were considered more important in influencing fluxes. Under these conditions, several measurement sites would be desirable in order to quantify the contribution of advection to the local surface exchange.
    Atmospheric Environment 02/2012; 47:218–225. · 3.11 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The metabolism of bromine in marine brown algae remains poorly understood. This contrasts with the recent finding that the accumulation of iodide in the brown alga Laminaria serves the provision of an inorganic antioxidant - the first case documented from a living system. The aim of this study was to use an interdisciplinary array of techniques to study the chemical speciation, transformation, and function of bromine in Laminaria and to investigate the link between bromine and iodine metabolism, in particular in the antioxidant context. First, bromine and iodine levels in different Laminaria tissues were compared by inductively coupled plasma MS. Using in vivo X-ray absorption spectroscopy, it was found that, similarly to iodine, bromine is predominantly present in this alga in the form of bromide, albeit at lower concentrations, and that it shows similar behaviour upon oxidative stress. However, from a thermodynamic and kinetic standpoint, supported by in vitro and reconstituted in vivo assays, bromide is less suitable than iodide as an antioxidant against most reactive oxygen species except superoxide, possibly explaining why kelps prefer to accumulate iodide. This constitutes the first-ever study exploring the potential antioxidant function of bromide in a living system and other potential physiological roles. Given the tissue-specific differences observed in the content and speciation of bromine, it is concluded that the bromide uptake mechanism is different from the vanadium iodoperoxidase-mediated uptake of iodide in L. digitata and that its function is likely to be complementary to the iodide antioxidant system for detoxifying superoxide.
    Journal of Experimental Botany 04/2013; · 5.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Measurements of atmospheric chemistry in polar regions have been made for more than half a century. Probably the first Antarctic ozone data were recorded in 1958 during the International Geophysical Year. Since then, many measurement campaigns followed, and the results are now spread over many publications in several journals. Here, we have compiled measurements of tropospheric gas-phase and aerosol chemistry made in the Arctic and the Antarctic. It is hoped that this data collection is worth more than the sum of its components and serves as a basis for future analyses of spatial and temporal trends in polar atmospheric chemistry.
    Earth System Science Data. 12/2012; 4(1):215-282.

A. C. Lewis