Can 1000 reviews be wrong? Actin, alpha-Catenin, and adherens junctions.

Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
Cell (Impact Factor: 33.12). 01/2006; 123(5):769-72. DOI: 10.1016/j.cell.2005.11.009
Source: PubMed

ABSTRACT Coupling between cell adhesion and the actin cytoskeleton is thought to require a stable link between the cadherin-catenin complex and actin that is mediated by alpha-catenin. In this issue of Cell, the Weis and Nelson groups call this static model into question, showing that alpha-catenin can directly regulate actin dynamics (Drees et al., 2005 and Yamada et al., 2005).

  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of hydrogel-based biomaterials represents a promising approach to generating new strategies for tissue engineering and regenerative medicine. In order to develop more sophisticated cell-seeded hydrogel constructs, it is important to understand how cells mechanically interact with hydrogels. In this paper, we review the mechanisms by which cells remodel hydrogels, the influence that the hydrogel mechanical and structural properties have on cell behaviour and the role of mechanical stimulation in cell-seeded hydrogels. Cell-mediated remodelling of hydrogels is directed by several cellular processes, including adhesion, migration, contraction, degradation and extracellular matrix deposition. Variations in hydrogel stiffness, density, composition, orientation and viscoelastic characteristics all affect cell activity and phenotype. The application of mechanical force on cells encapsulated in hydrogels can also instigate changes in cell behaviour. By improving our understanding of cell-material mechano-interactions in hydrogels, this should enable a new generation of regenerative medical therapies to be developed.
    Interface focus: a theme supplement of Journal of the Royal Society interface 04/2014; 4(2):20130038. DOI:10.1098/rsfs.2013.0038 · 3.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Borrelia burgdorferi is the causative agent of Lyme disease and is found in two different types of hosts in nature – Ixodes ticks and various mammalian organisms. To initiate disease and survive in mammalian host organisms, B. burgdorferi must be able to transfer to a new host, proliferate, attach to different tissue and resist the immune response. To resist the host's immune response, B. burgdorferi produces at least five different outer surface proteins that can bind complement regulator factor H (CFH) and/or factor H-like protein 1 (CFHL-1). The crystal structures of two uniquely folded complement binding proteins, which belong to two distinct gene families and are not found in other bacteria, have been previously described. The crystal structure of the CFH and CFHL-1 binding protein CspZ (also known as BbCRASP-2 or BBH06) from B. burgdorferi, which belongs to a third gene family, is reported in this study. The structure reveals that the overall fold is different from the known structures of the other complement binding proteins in B. burgdorferi or other bacteria; this structure does not resemble the fold of any known protein deposited in the Protein Data Bank (PDB). The N-terminal part of the CspZ protein forms a four-helix bundle and has features similar to the FAT domain (focal adhesion targeting domain) and a related domain found in the vinculin/α-catenin family. By combining our findings from the crystal structure of CspZ with previous mutagenesis studies, we have identified a likely binding surface on CspZ for CFH and CFHL-1.This article is protected by copyright. All rights reserved.
    FEBS Journal 04/2014; 281(11). DOI:10.1111/febs.12808 · 3.99 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The shape of a single animal cell is determined both by its internal cytoskeleton and through physical interactions with its environment. In a tissue context, this extracellular environment is made up largely of other cells and the extracellular matrix. As a result, the shape of cells residing within an epithelium will be determined both by forces actively generated within the cells themselves and by their deformation in response to forces generated elsewhere in the tissue as they propagate through cell-cell junctions. Together these complex patterns of forces combine to drive epithelial tissue morphogenesis during both development and homeostasis. Here we review the role of both active and passive cell shape changes and mechanical feedback control in tissue morphogenesis in different systems.
    Developmental Biology 01/2015; DOI:10.1016/j.ydbio.2014.12.030 · 3.64 Impact Factor


Available from