In vivo transcriptional profile analysis reveals RNA splicing and chromatin remodeling as prominent processes for adult neurogenesis.

Department of Neurological Surgery and Developmental and Stem Cell Biology Program, University of California, San Francisco, CA 94143, USA.
Molecular and Cellular Neuroscience (Impact Factor: 3.84). 02/2006; 31(1):131-48. DOI: 10.1016/j.mcn.2005.10.005
Source: PubMed

ABSTRACT Neural stem cells and neurogenesis persist in the adult mammalian brain subventricular zone (SVZ). Cells born in the rodent SVZ migrate to the olfactory bulb (Ob) where they differentiate into interneurons. To determine the gene expression and functional profile of SVZ neurogenesis, we performed three complementary sets of transcriptional analysis experiments using Affymetrix GeneChips: (1) comparison of adult mouse SVZ and Ob gene expression profiles with those of the striatum, cerebral cortex, and hippocampus; (2) profiling of SVZ stem cells and ependyma isolated by fluorescent-activated cell sorting (FACS); and (3) analysis of gene expression changes during in vivo SVZ regeneration after anti-mitotic treatment. Gene Ontology (GO) analysis of data from these three separate approaches showed that in adult SVZ neurogenesis, RNA splicing and chromatin remodeling are biological processes as statistically significant as cell proliferation, transcription, and neurogenesis. In non-neurogenic brain regions, RNA splicing and chromatin remodeling were not prominent processes. Fourteen mRNA splicing factors including Sf3b1, Sfrs2, Lsm4, and Khdrbs1/Sam68 were detected along with 9 chromatin remodeling genes including Mll, Bmi1, Smarcad1, Baf53a, and Hat1. We validated the transcriptional profile data with Northern blot analysis and in situ hybridization. The data greatly expand the catalogue of cell cycle components, transcription factors, and migration genes for adult SVZ neurogenesis and reveal RNA splicing and chromatin remodeling as prominent biological processes for these germinal cells.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human brain is a highly specialized organ containing nearly 170 billion cells with specific functions. Development of the brain requires adequate proliferation, proper cell migration, differentiation and maturation of progenitors. This is in turn dependent on spatial and temporal coordination of gene transcription, which requires the integration of both cell intrinsic and environmental factors. Histone acetyltransferases (HATs) are one family of proteins that modulate expression levels of genes in a space- and time-dependent manner. HATs and their molecular complexes are able to integrate multiple molecular inputs and mediate transcriptional levels by acetylating histone proteins. In mammals, 19 HATs have been described and are separated into five families (p300/CBP, MYST, GNAT, NCOA and transcription-related HATs). During embryogenesis, individual HATs are expressed or activated at specific times and locations to coordinate proper development. Not surprisingly, mutations in HATs lead to severe developmental abnormalities in the nervous system and increased neurodegeneration. This review focuses on our current understanding of HATs and their biological roles during neural development.
    Cell and Tissue Research 05/2014; · 3.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: FAM40B (STRIP2) is a member of the striatin-interacting phosphatase and kinase (STRIPAK) complex that is involved in the regulation of various processes such as cell proliferation and differentiation. Its role for differentiation processes in embryonic stem cells (ESCs) is till now completely unknown. Short hairpin RNA (shRNA)-mediated silencing of Fam40b expression in ESCs and differentiating embryoid bodies (EBs) led to perturbed differentiation to embryonic germ layers and their derivatives including a complete abrogation of cardiomyogenesis. Pluripotency factors such as Nanog, Oct4 and Sox2 as well as epigenetic factors such as histone acetyltransferase type B (HAT1) and DNA (cytosine-5)-methyltransferase 3-β (Dnmt3b) were highly upregulated in Fam40b knockdown EBs as compared with control and scrambled EBs. To examine the relevance of Fam40b for development in vivo, Fam40b was knocked down in developing zebrafish. Morpholino-mediated knockdown of Fam40b led to severe abnormalities of the cardiovascular system, including an impaired expression of ventricular myosin heavy chain (vmhc) and of cardiac myosin light chain 2 (cmlc2) in the heart. We identified the gene product of Fam40b in ESCs as a perinuclear and nucleolar protein with a molecular weight of 96 kDa. We conclude that the expression of Fam40b is essential for the lineage commitment of murine embryonic stem cells (mESCs) into differentiated somatic cells via mechanisms involving pluripotency and epigenetic networks.
    Cell Death & Disease 07/2014; 5:e1320. · 6.04 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Esophageal carcinoma (EC) is one of the most fatal carcinomas of the gastrointestinal tract. Aberrant activity of histone acetyltransferases (HATs)/deacetylases (HDACs) play a critical role in carcinogenesis through the regulation of the genes involved in cell differentiation, proliferation, and apoptosis. However, cellular functions of HATs/HDACs in esophageal cancer and its molecular mechanisms remain unclear. An RNAi screen was used in this study to identify the histone acetyltransferases (HATs) and deacetylases (HDACs) that could be critical for the survival of EC cells. We demonstrated that HAT1 (histone acetyltransferase 1) was an important determinant to regulate the proliferation of human EC Eca-109 cells. Furthermore, we showed that the knockdown of HAT1 induced a G2/M cell cycle arrest, which was associated with the disruption of cell cycle-related events, including the decrease of cyclinD1 as well as alteration in cyclinB1 expression. The expression of HAT1 was validated to be higher in the primary tumors and adjacent tissue as compared to that of the normal esophageal tissue. Furthermore, we found that HAT1 expression was directly correlated with the poor tumor differentiation of EC tissue, which suggested that HAT1 played an important role in esophageal carcinoma and that it could be a novel EC therapeutic target.
    International journal of clinical and experimental pathology. 01/2014; 7(7):3898-907.

Full-text (4 Sources)

Available from
Jun 5, 2014