Peripheral B cells latently infected with Epstein-Barr virus display molecular hallmarks of classical antigen-selected memory B cells.

Department of Pathology, Tufts University School of Medicine, Boston, MA 02111, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 01/2006; 102(50):18093-8. DOI: 10.1073/pnas.0509311102
Source: PubMed

ABSTRACT Epstein-Barr virus (EBV) establishes a lifelong persistent infection within peripheral blood B cells with the surface phenotype of memory cells. To date there is no proof that these cells have the genotype of true germinal-center-derived memory B cells. It is critical to understand the relative contribution of viral mimicry versus antigen signaling to the production of these cells because EBV encodes proteins that can affect the surface phenotype of infected cells and provide both T cell help and B cell receptor signals in the absence of cognate antigen. To address these questions we have developed a technique to identify single EBV-infected cells in the peripheral blood and examine their expressed Ig genes. The genes were all isotype-switched and somatically mutated. Furthermore, the mutations do not cause stop codons and display the pattern expected for antigen-selected memory cells based on their frequency, type, and location within the Ig gene. We conclude that latently infected peripheral blood B cells display the molecular hallmarks of classical antigen-selected memory B cells. Therefore, EBV does not disrupt the normal processing of latently infected cells into memory, and deviations from normal B cell biology are not tolerated in the infected cells. This article provides definitive evidence that EBV in the peripheral blood persists in true memory B cells.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The particular epidemiological features of Burkitt lymphoma (BL) in Tropical Africa, first described by Denis Burkitt in 1958, initiated the search for a virus that induces malignant B cell lymphomas in humans and is transmitted by arthropods. The herpes virus (Epstein‐Barr virus, EBV) discovered by Epstein and collaborators in cell lines established from BL biopsies fulfilled some of these predictions. It drives primary B cells into unlimited proliferation, induces malignant B cell lymphomas in immunocompromised individuals (post‐transplant lympho‐proliferative disease, PTLD) in vivo, and footprints of the virus are generally detected in African BL biopsies supporting a causative role of the virus in the pathogenesis of BL. The virus is, however, not transmitted by arthropods and is spread ubiquitously amongst the human population through saliva. Furthermore, BL and EBV‐induced PTLD are now recognized as pathogenetically distinct entities: BL involves MYC‐immunoglobulin translocations in contrast to PTLD, and different patterns of viral genes are expressed in both diseases. Viral gene products expressed in BL are assumed to contribute to inhibition of apoptosis, although their precise mechanism of action is not fully understood. In the future, next generation sequencing is expected to shed more light on the contribution of EBV to the pathogenesis of BL.
    British Journal of Haematology 03/2012; 156(6):719-29. DOI:10.1111/j.1365-2141.2011.09007.x · 4.96 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CD8+ T-cell deficiency is a feature of many chronic autoimmune diseases, including multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, Sjögren's syndrome, systemic sclerosis, dermatomyositis, primary biliary cirrhosis, primary sclerosing cholangitis, ulcerative colitis, Crohn's disease, psoriasis, vitiligo, bullous pemphigoid, alopecia areata, idiopathic dilated cardiomyopathy, type 1 diabetes mellitus, Graves' disease, Hashimoto's thyroiditis, myasthenia gravis, IgA nephropathy, membranous nephropathy, and pernicious anaemia. It also occurs in healthy blood relatives of patients with autoimmune diseases, suggesting it is genetically determined. Here it is proposed that this CD8+ T-cell deficiency underlies the development of chronic autoimmune diseases by impairing CD8+ T-cell control of Epstein-Barr virus (EBV) infection, with the result that EBV-infected autoreactive B cells accumulate in the target organ where they produce pathogenic autoantibodies and provide costimulatory survival signals to autoreactive T cells which would otherwise die in the target organ by activation-induced apoptosis. Autoimmunity is postulated to evolve in the following steps: (1) CD8+ T-cell deficiency, (2) primary EBV infection, (3) decreased CD8+ T-cell control of EBV, (4) increased EBV load and increased anti-EBV antibodies, (5) EBV infection in the target organ, (6) clonal expansion of EBV-infected autoreactive B cells in the target organ, (7) infiltration of autoreactive T cells into the target organ, and (8) development of ectopic lymphoid follicles in the target organ. It is also proposed that deprivation of sunlight and vitamin D at higher latitudes facilitates the development of autoimmune diseases by aggravating the CD8+ T-cell deficiency and thereby further impairing control of EBV. The hypothesis makes predictions which can be tested, including the prevention and successful treatment of chronic autoimmune diseases by controlling EBV infection.
    01/2012; 2012:189096. DOI:10.1155/2012/189096
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To establish a persistent latent infection, Epstein-Barr virus (EBV) faces a challenge in that the virus-infected host cell must transit through the germinal centre reaction. This is a site of B cell differentiation where antibody responses are optimised, and the selection criteria for B cells are stringent. The germinal centre environment is harsh, and the vast majority of B cells here die by apoptosis. Only cells receiving adequate survival signals will differentiate fully to be released into the periphery as long-term memory B cells (the site of persistence). In this review, we detail the apoptotic pathways potentially encountered by EBV-infected B cells during the process of infection, and we describe the functions of those EBV-regulated cellular and viral genes that help promote survival of the host B cell.
    Advances in Hematology 10/2011; 2011:829525. DOI:10.1155/2011/829525


Available from