Identification and characterization of tandem repeats in exon III of dopamine receptor D4 (DRD4) genes from different mammalian species.

Research Institute of Biological Psychiatry, H:S Sct. Hans Hospital, Roskilde, Denmark.
DNA and Cell Biology (Impact Factor: 1.99). 01/2006; 24(12):795-804. DOI: 10.1089/dna.2005.24.795
Source: PubMed

ABSTRACT In this study we have identified and characterized dopamine receptor D4 (DRD4) exon III tandem repeats in 33 public available nucleotide sequences from different mammalian species. We found that the tandem repeat in canids could be described in a novel and simple way, namely, as a structure composed of 15- and 12- bp modules. Tandem repeats composed of 18-bp modules were found in sequences from the horse, zebra, onager, and donkey, Asiatic bear, polar bear, common raccoon, dolphin, harbor porpoise, and domestic cat. Several of these sequences have been analyzed previously without a tandem repeat being found. In the domestic cow and gray seal we identified tandem repeats composed of 36-bp modules, each consisting of two closely related 18-bp basic units. A tandem repeat consisting of 9-bp modules was identified in sequences from mink and ferret. In the European otter we detected an 18-bp tandem repeat, while a tandem repeat consisting of 27-bp modules was identified in a sequence from European badger. Both these tandem repeats were composed of 9-bp basic units, which were closely related with the 9-bp repeat modules identified in the mink and ferret. Tandem repeats could not be identified in sequences from rodents. All tandem repeats possessed a high GC content with a strong bias for C. On phylogenetic analysis of the tandem repeats evolutionary related species were clustered into the same groups. The degree of conservation of the tandem repeats varied significantly between species. The deduced amino acid sequences of most of the tandem repeats exhibited a high propensity for disorder. This was also the case with an amino acid sequence of the human DRD4 exon III tandem repeat, which was included in the study for comparative purposes. We identified proline-containing motifs for SH3 and WW domain binding proteins, potential phosphorylation sites, PDZ domain binding motifs, and FHA domain binding motifs in the amino acid sequences of the tandem repeats. The numbers of potential functional sites varied pronouncedly between species. Our observations provide a platform for future studies of the architecture and evolution of the DRD4 exon III tandem repeat, and they suggest that differences in the structure of this tandem repeat contribute to specialization and generation of diversity in receptor function.

  • Source
    Current topics in behavioral neurosciences. 12/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The chicken domestication process represents a typical model of artificial selection, and gives significant insight into the general understanding of the influence of artificial selection on recognizable phenotypes. Two Japanese domesticated chicken varieties, the fighting cock (Shamo) and the long-crowing chicken (Naganakidori), have been selectively bred for dramatically different phenotypes. The former has been selected exclusively for aggressiveness and the latter for long crowing with an obedient sitting posture. To understand the particular mechanism behind these genetic changes during domestication, we investigated the degree of genetic differentiation in the aforementioned chickens, focusing on dopamine receptor D2, D3, and D4 genes. We studied other ornamental chickens such as Chabo chickens as a reference for comparison. When genetic differentiation was measured by an index of nucleotide differentiation (NST) newly devised in this study, we found that the NST value of DRD4 for Shamo (0.072) was distinctively larger than those of the other genes among the three populations, suggesting that aggressiveness has been selected for in Shamo by collecting a variety of single nucleotide polymorphisms. In addition, we found that in DRD4 in Naganakidori, there is a deletion variant of one proline at the 24th residue in the repeat of nine prolines of exon 1. We thus conclude that artificial selection has operated on these different kinds of genetic variation in the DRD4 genes of Shamo and Naganakidori so strongly that the two domesticated varieties have differentiated to obtain their present opposite features in a relatively short period of time.
    PLoS ONE 07/2014; 9(7):e101778. · 3.53 Impact Factor
  • Source