Insulin Dynamically Regulates Calmodulin Gene Expression by Sequential O-Glycosylation and Phosphorylation of Sp1 and Its Subcellular Compartmentalization in Liver Cells

University of Tennessee, Knoxville, Tennessee, United States
Journal of Biological Chemistry (Impact Factor: 4.57). 03/2006; 281(6):3642-50. DOI: 10.1074/jbc.M511223200
Source: PubMed


O-glycosylation and phosphorylation of Sp1 are thought to modulate the expression of a number of genes in normal and diabetic state. Sp1 is an obligatory transcription factor for constitutive and insulin-responsive expression of the calmodulin gene (Majumdar, G., Harmon, A., Candelaria, R., Martinez-Hernandez, A., Raghow, R., and Solomon, S. S. (2003) Am. J. Physiol. 285, E584-E591). Here we report the temporal dynamics of accumulation of total, O-GlcNAc-modified, and phosphorylated Sp1 in H-411E hepatoma cells by immunohistochemistry with monospecific antibodies, confocal microscopy, and matrix-assisted laser desorption and ionization-time of flight mass spectrometry. Insulin elicited sequential and reciprocal post-translational modifications of Sp1. The O-glycosylation of Sp1 and its nuclear accumulation induced by insulin peaked early (approximately 30 min), followed by a steady decline of O-GlcNAc-modified Sp1 to negligible levels by 240 min. The accumulation of phosphorylated Sp1 in the nuclei of insulin-treated cells showed an opposite pattern, increasing steadily until reaching a maximum around 240 min after treatment. Analyses of the total, O-GlcNAc-modified, or phosphorylated Sp1 by Western blot and mass spectrometry corroborated the sequential and reciprocal control of post-translational modifications of Sp1 in response to insulin. Treatment of cells with streptozotocin (a potent inhibitor of O-GlcNAcase) led to hyperglycosylation of Sp1 that failed to be significantly phosphorylated. The mass spectrometry data indicated that a number of common serine residues of Sp1 undergo time-dependent, reciprocal O-glycosylation and phosphorylation, paralleling its rapid translocation from cytoplasm to the nucleus. Later, changes in the steady state levels of phosphorylated Sp1 mimicked the enhanced steady state levels of calmodulin mRNA seen after insulin treatment. Thus, O-glycosylation of Sp1 appears to be critical for its localization into the nucleus, where it undergoes obligatory phosphorylation that is needed for Sp1 to activate calmodulin gene expression.

4 Reads
  • Source
    • "Some blots were stripped and re-probed with anti-ERK or p38 antibodies to determine equivalency of protein loading. The data from 3–4 replicate experiments were quantified by densitometry, normalized against total ERK or p38 or actin, and subjected to statistical analysis, as outlined previously [14,57]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background We have shown previously that pan-HDAC inhibitors (HDACIs) m-carboxycinnamic acid bis-hydroxamide (CBHA) and trichostatin A (TSA) attenuated cardiac hypertrophy in BALB/c mice by inducing hyper-acetylation of cardiac chromatin that was accompanied by suppression of pro-inflammatory gene networks. However, it was not feasible to determine the precise contribution of the myocytes- and non-myocytes to HDACI-induced gene expression in the intact heart. Therefore, the current study was undertaken with a primary goal of elucidating temporal changes in the transcriptomes of cardiac myocytes exposed to CBHA and TSA. Results We incubated H9c2 cardiac myocytes in growth medium containing either of the two HDACIs for 6h and 24h and analyzed changes in gene expression using Illumina microarrays. H9c2 cells exposed to TSA for 6h and 24h led to differential expression of 468 and 231 genes, respectively. In contrast, cardiac myocytes incubated with CBHA for 6h and 24h elicited differential expression of 768 and 999 genes, respectively. We analyzed CBHA- and TSA-induced differentially expressed genes by Ingenuity Pathway (IPA), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Core_TF programs and discovered that CBHA and TSA impinged on several common gene networks. Thus, both HDACIs induced a repertoire of signaling kinases (PTEN-PI3K-AKT and MAPK) and transcription factors (Myc, p53, NFkB and HNF4A) representing canonical TGFβ, TNF-α, IFNγ and IL-6 specific networks. An overrepresentation of E2F, AP2, EGR1 and SP1 specific motifs was also found in the promoters of the differentially expressed genes. Apparently, TSA elicited predominantly TGFβ- and TNF-α-intensive gene networks regardless of the duration of treatment. In contrast, CBHA elicited TNF-α and IFNγ specific networks at 6 h, followed by elicitation of IL-6 and IFNγ-centered gene networks at 24h. Conclusions Our data show that both CBHA and TSA induced similar, but not identical, time-dependent, gene networks in H9c2 cardiac myocytes. Initially, both HDACIs impinged on numerous genes associated with adipokine signaling, intracellular metabolism and energetics, and cell cycle. A continued exposure to either CBHA or TSA led to the emergence of a number of apoptosis- and inflammation-specific gene networks that were apparently suppressed by both HDACIs. Based on these data we posit that the anti-inflammatory and anti-proliferative actions of HDACIs are myocyte-intrinsic. These findings advance our understanding of the mechanisms of actions of HDACIs on cardiac myocytes and reveal potential signaling pathways that may be targeted therapeutically.
    BMC Genomics 12/2012; 13(1):709. DOI:10.1186/1471-2164-13-709 · 3.99 Impact Factor
  • Source
    • "In addition, high glucose (HG) concentrations can potentially stimulate the expression of genes associated with the development of diabetic nephropathy [58]. A recent report also indicated that insulin dynamically regulates calmodulin gene expression by sequential O-glycosylation and phosphorylation of Sp1 in liver cells [59]. In addition, hyperglycemia-induced mitochondrial superoxide overproduction increases hexosamine synthesis and O-glycosylation of Sp1, which activates the expression of genes that contribute to the pathogenesis of diabetic complications [60]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Specific protein 1 (Sp1), the first transcription factor to be isolated, regulates the expression of numerous genes involved in cell proliferation, apoptosis, and differentiation. Recent studies found that an increase in Sp1 transcriptional activity is associated with the tumorigenesis. Moreover, post-translational modifications of Sp1, including glycosylation, phosphorylation, acetylation, sumoylation, ubiquitination, and methylation, regulate Sp1 transcriptional activity and modulate target gene expression by affecting its DNA binding activity, transactivation activity, or protein level. In addition, recent studies have investigated several compounds with anti-cancer activity that could inhibit Sp1 transcriptional activity. In this review, we describe the effect of various post-translational modifications on Sp1 transcriptional activity and discuss compounds that inhibit the activity of Sp1.
    Journal of Biomedical Science 11/2012; 19(1):94. DOI:10.1186/1423-0127-19-94 · 2.76 Impact Factor
  • Source
    • "SP1 is a ubiquitously expressed, prototypic C2H2-type zinc fingercontaining DNA binding protein that can activate or repress transcription through GC-rich elements in response to physiological and pathological stimuli. SP1 can be phosphorylated by various kinases at different sites, and the effects of these modifications can lead to its translocation from the cytoplasm to the nucleus, followed by the regulation of gene expression (Majumdar et al. 2006, Solomon et al. 2008, Tan & Khachigian 2009). A report from Chu & Ferro (2005) shows that AMPK downstream signaling molecules, such as ERK, can mediate the phosphorylation of transcription factor SP1. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Adiponectin secreted from adipose tissues plays a role in the regulation of energy homeostasis, food intake, and reproduction in the hypothalamus. We have previously demonstrated that adiponectin significantly inhibited GNRH secretion from GT1-7 hypothalamic GNRH neuron cells. In this study, we further investigated the effect of adiponectin on hypothalamic KISS1 gene transcription, which is the upstream signal of GNRH. We found that globular adiponectin (gAd) or AICAR, an artificial AMPK activator, decreased KISS1 mRNA transcription and promoter activity. Conversely, inhibition of AMPK by Compound C or AMPKα1-SiRNA augmented KISS1 mRNA transcription and promoter activity. Additionally, gAd and AICAR decreased the translocation of specificity protein-1 (SP1) from cytoplasm to nucleus; however, Compound C and AMPKα1-siRNA played an inverse role. Our experiments in vivo demonstrated that the expression of Kiss1 mRNA was stimulated twofold in the Compound C-treated rats and decreased about 60-70% in gAd- or AICAR-treated rats compared with control group. The numbers of kisspeptin immunopositive neurons in the arcuate nucleus region of Sprague Dawley rats mimicked the same trend seen in Kiss1 mRNA levels in animal groups with different treatments. In conclusion, our results provide the first evidence that adiponectin reduces Kiss1 gene transcription in GT1-7 cells through activation of AMPK and subsequently decreased translocation of SP1.
    Journal of Endocrinology 05/2012; 214(2):177-89. DOI:10.1530/JOE-12-0054 · 3.72 Impact Factor
Show more


4 Reads
Available from