Structural basis for discrimination of L-phenylalanine from L-tyrosine by phenylalanyl-tRNA synthetase.

Department of Structural Biology, Weizmann Institute of Science, 76100 Rehovot, Israel.
Structure (Impact Factor: 5.99). 01/2006; 13(12):1799-807. DOI: 10.1016/j.str.2005.08.013
Source: PubMed

ABSTRACT Aminoacyl-tRNA synthetases (aaRSs) exert control over the faithful transfer of amino acids onto cognate tRNAs. Since chemical structures of various amino acids closely resemble each other, it is difficult to discriminate between them. Editing activity has been evolved by certain aaRSs to resolve the problem. In this study, we determined the crystal structures of complexes of T. thermophilus phenylalanyl-tRNA synthetase (PheRS) with L-tyrosine, p-chloro-phenylalanine, and a nonhydrolyzable tyrosyl-adenylate analog. The structures demonstrate plasticity of the synthetic site capable of binding substrates larger than phenylalanine and provide a structural basis for the proofreading mechanism. The editing site is localized at the B3/B4 interface, 35 A from the synthetic site. Glubeta334 plays a crucial role in the specific recognition of the Tyr moiety in the editing site. The tyrosyl-adenylate analog binds exclusively in the synthetic site. Both structural data and tyrosine-dependent ATP hydrolysis enhanced by tRNA(Phe) provide evidence for a preferential posttransfer editing pathway in the phenylalanine-specific system.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Accurate translation of mRNA into protein is vital for maintenance of cellular integrity. Translational fidelity is achieved by two key events: synthesis of correctly paired aminoacyl-tRNAs by aminoacyl-tRNA synthetases (aaRSs) and stringent selection of aminoacyl-tRNAs (aa-tRNAs) by the ribosome. AaRSs define the genetic code by catalyzing the formation of precise aminoacyl ester-linked tRNAs via a two-step reaction. AaRSs ensure faithful aa-tRNA synthesis via high substrate selectivity and/or by proofreading (editing) of noncognate products. About half of the aaRSs rely on proofreading mechanisms to achieve high levels of accuracy in aminoacylation. Editing functions in aaRSs contribute to the overall low error rate in protein synthesis. Over 40 years of research on aaRSs using structural, biochemical, and kinetic approaches has expanded our knowledge of their cellular roles and quality control mechanisms. Here, we review aaRS editing with an emphasis on the mechanistic and kinetic details of the process.
    Advances in protein chemistry and structural biology. 01/2012; 86:1-43.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Proteins are precisely assembled with amino acids by matching the anticodons of charged transfer RNAs to nucleotide triplets in mRNA sequences. Accurate translation depends on the specific coupling of cognate amino acids and tRNAs - a step carried out by aminoacyl-tRNA synthetases (aaRSs) and that generates the genetic code. Owing to their intrinsic similarity, aaRSs developed highly differentiated structures to discriminate between amino acids at the active site for aminoacylation. Because this discrimination is not sufficient to prevent toxic mistranslation, aaRSs developed separate structures to further refine recognition by proofreading. From comprehensive structural studies on aaRSs, many of the molecular details have been elucidated for the recognition of cognate amino acids and for the misactivation and editing of noncognate amino acids, Here we review recent advances in the structural description of the binding, activation and editing of amino acids, which collectively reveal many aspects of the fine-tuned systems that resulted in a robust and universal genetic code.
    Current Opinion in Structural Biology 12/2011; 22(1):119-26. · 8.74 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mistranslation can follow two events during protein synthesis: production of non-cognate amino acid:transfer RNA (tRNA) pairs by aminoacyl-tRNA synthetases (aaRSs) and inaccurate selection of aminoacyl-tRNAs by the ribosome. Many aaRSs actively edit non-cognate amino acids, but editing mechanisms are not evolutionarily conserved, and their physiological significance remains unclear. To address the connection between aaRSs and mistranslation, the evolutionary divergence of tyrosine editing by phenylalanyl-tRNA synthetase (PheRS) was used as a model. Certain PheRSs are naturally error prone, most notably a Mycoplasma example that displayed a low level of specificity consistent with elevated mistranslation of the proteome. Mycoplasma PheRS was found to lack canonical editing activity, relying instead on discrimination against the non-cognate amino acid by kinetic proofreading. This mechanism of discrimination is inadequate for organisms where translation is more accurate, as Mycoplasma PheRS failed to support Escherichia coli growth. However, minor changes in the defunct editing domain of the Mycoplasma enzyme were sufficient to restore E. coli growth, indicating that translational accuracy is an evolutionarily selectable trait.
    Nucleic Acids Research 12/2012; · 8.81 Impact Factor


Available from