Article

Involvement of MINK, a Ste20 Family Kinase, in Ras Oncogene-Induced Growth Arrest in Human Ovarian Surface Epithelial Cells

Signal Transduction Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom.
Molecular Cell (Impact Factor: 14.46). 01/2006; 20(5):673-85. DOI: 10.1016/j.molcel.2005.10.038
Source: PubMed

ABSTRACT The ability of activated Ras to induce growth arrest of human ovarian surface epithelial (HOSE) cells via induction of the cyclin-dependent kinase inhibitor p21(WAF1/CIP1) has been used to screen for Ras pathway signaling components using a library of RNA interference (RNAi) vectors targeting the kinome. Two known Ras-regulated kinases were identified, phosphoinositide 3-kinase p110alpha and ribosomal protein S6 kinase p70(S6K1), plus the MAP kinase kinase kinase kinase MINK, which had not previously been implicated in Ras signaling. MINK is activated after Ras induction via a mechanism involving reactive oxygen species and mediates stimulation of the stress-activated protein kinase p38 MAPK downstream of the Raf/ERK pathway. p38 MAPK activation is essential for Ras-induced p21(WAF1/CIP1) upregulation and cell cycle arrest. MINK is thus a distal target of Ras signaling in the induction of a growth-arrested, senescent-like phenotype that may act to oppose oncogenic transformation in HOSE cells.

Download full-text

Full-text

Available from: Simon J Cook, Jun 26, 2015
1 Follower
 · 
117 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Deregulated oncogenes such as MYC and RAS are typically insufficient to transform cells on their own due to the activation of pathways that restrain proliferation. Previous studies have shown that oncogenic H-Ras can induce proliferative arrest or senescence, depending on the cellular context. Here, we show that deregulated H-Ras activity can also lead to caspase-independent cell death with features of autophagy. Ras-induced autophagy was associated with upregulation of the BH3-only protein Noxa as well as the autophagy regulator Beclin-1. Silencing of Noxa or Beclin-1 expression reduced Ras-induced autophagy and increased clonogenic survival. Ras-induced cell death was also inhibited by coexpression of Bcl-2 family members that inhibit Beclin-1 function. Ras-induced autophagy was associated with Noxa-mediated displacement of the Bcl-2 family member, Mcl-1, from Beclin-1. Thus, Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death, which represents a mechanism to limit the oncogenic potential of deregulated Ras signals.
    Molecular cell 02/2011; 42(1):23-35. DOI:10.1016/j.molcel.2011.02.009 · 14.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Almost half a century after the first reports describing the limited replicative potential of primary cells in culture, there is now overwhelming evidence for the existence of "cellular senescence" in vivo. It is being recognized as a critical feature of mammalian cells to suppress tumorigenesis, acting alongside cell death programs. Here, we review the various features of cellular senescence and discuss their contribution to tumor suppression. Additionally, we highlight the power and limitations of the biomarkers currently used to identify senescent cells in vitro and in vivo.
    Genes & development 11/2010; 24(22):2463-79. DOI:10.1101/gad.1971610 · 12.64 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Of the RAF family of protein kinases, BRAF is the only member to be frequently activated by mutation in cancer. A single amino acid substitution (V600E) accounts for the vast majority and results in constitutive activation of BRAF kinase function. Its expression is required to maintain the proliferative and oncogenic characteristics of BRAF(E600)-expressing human tumour cells. Although BRAF(E600) acts as an oncogene in the context of additional genetic lesions, in primary cells it appears to be associated rather with transient stimulation of proliferation. Eventually, BRAF(E600) signalling triggers cell cycle arrest with the hallmarks of cellular senescence, as is illustrated by several recent studies in cultured cells, animal models and benign human lesions. In this review, we will discuss recent advances in our understanding of the role of BRAF(E600) in benign and malignant human tumours and the implications for therapeutic intervention.
    Oncogene 03/2008; 27(7):877-95. DOI:10.1038/sj.onc.1210704 · 8.56 Impact Factor