Article

Electrophysiological heterogeneity of spinally projecting Serotonergic and nonserotonergic neurons in the rostral ventromedial medulla

Dept. of Anesthesia, University of Iowa, 200 Hawkins Dr., 6 JCP, Iowa City, IA 52242, USA.
Journal of Neurophysiology (Impact Factor: 3.04). 04/2006; 95(3):1853-63. DOI: 10.1152/jn.00883.2005
Source: PubMed

ABSTRACT This study examined the passive membrane and action potential properties of serotonergic and nonserotonergic neurons in the rostral ventromedial medulla (RVM) of the rat using whole cell patch-clamp recording techniques in the slice. Serotonergic neurons were identified by immunoreactivity for tryptophan hydroxylase (TrpH). Spinally projecting neurons were retrogradely labeled with 1'-dioactadecyl-3,3,3',3'-tetramethylindocarbodyanine perchlorate (DiI). Three types of neurons were identified within both spinally projecting serotonergic and nonserotonergic populations. Type 1 neurons exhibited irregular or sporadic spontaneous activity interspersed with periods of quiescence. Type 2 neurons were not spontaneously active and were additionally discriminated by a more negative resting membrane potential and a larger-amplitude action potential. Type 3 neurons fired repetitively without pause. Serotonergic neurons had a higher membrane resistance and greater action potential half-width than their nonserotonergic counterparts and rarely exhibited a fast afterhyperpolarization. Serotonergic type 3 neurons also fired more slowly and regularly than nonserotonergic type 3 neurons. Comparison of electrophysiological and immunohistochemical characteristics suggested that the smallest type 3 serotonergic neurons had an increased risk of immunohistochemical "misclassification" due to failure to detect TrpH, possibly due to more complete dialysis of intracellular contents during lengthy recordings. This risk was minimal for type 1 or 2 serotonergic neurons. The three different types of spinally projecting serotonergic neurons also differed markedly in their responsiveness to the mu opioid receptor agonist D-Ala2, NMePhe4, Gly5-ol]enkephalin. These results provide important new electrophysiological and pharmacological evidence for a significant heterogeneity among spinally projecting serotonergic RVM neurons. They may also provide a basis for resolving the controversy concerning the role of serotonergic RVM neurons in opioid analgesia.

0 Followers
 · 
65 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Direct inhibition of pain facilitatory neurons in the rostral ventromedial medulla (RVM) is one mechanism by which mu opioid receptor (MOPr) agonists are proposed to produce antinociception. The antinociceptive and anti-hyperalgesic effects of the MOPr agonist DAMGO are enhanced after intraplantar injection of complete Freund's adjuvant (CFA). This study therefore examined whether CFA treatment similarly enhanced the ability of DAMGO to induce outward currents in spinally projecting RVM neurons. It further examined whether the electrophysiological properties of RVM neurons are altered by CFA treatment. Whole-cell patch clamp recordings were made from three types of serotonergic as well as non-serotonergic spinally projecting RVM neurons obtained from control rats and rats 4h or four days after CFA. Persistent, but not acute inflammatory nociception increased the percentage of Type 2 non-serotonergic neurons that responded to DAMGO from 17% to 57% and the percentage of Type 3 serotonergic neurons that responded to DAMGO from 5% to 55%. These same two populations of RVM neurons exhibited significant differences in their passive membrane properties or spontaneous discharge rate. The outward currents produced by the GABA(B) receptor agonist baclofen were not enhanced, suggesting that the enhancement does not reflect global changes in levels of G(i/o) or activity of G-protein regulated inwardly rectifying potassium channels. These results provide a cellular basis for the enhanced anti-hyperalgesic and antinociceptive effects of MOPr agonists under conditions of persistent inflammatory nociception. These results also provide intriguing, albeit indirect, evidence for two different populations of pain facilitatory neurons in the RVM.
    Pain 02/2010; 149(1):107-16. DOI:10.1016/j.pain.2010.01.017 · 5.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the evidence for a significant contribution of brainstem serotonergic (5HT) systems to the control of spinal cord "pain" transmission neurons, attention has turned recently to the influence of nonserotonergic neurons, including the facilitatory and inhibitory controls that originate from so-called "on" and "off" cells of the rostroventral medulla (RVM). Unclear, however, is the extent to which these latter circuits interact with or are influenced by the serotonergic cell groups. To address this question we selectively targeted expression of a transneuronal tracer, wheat germ agglutinin (WGA), in the 5HT neurons so as to study the interplay between the 5HT and non-5HT systems. In addition to confirming the direct medullary 5HT projection to the spinal cord we also observed large numbers of non-5HT neurons, in the medullary nucleus reticularis gigantocellularis and magnocellularis, that were WGA-immunoreactive, i.e., were transneuronally labeled from 5HT neurons. FluoroGold injections into the spinal cord established that these reticular neurons are not only postsynaptic to the 5HT neurons of the medulla, but that most are also at the origin of descending, bulbospinal pathways. By contrast, we found no evidence that neurons of the midbrain periaqueductal gray that project to the RVM are postsynaptic to midbrain or medullary 5HT neurons. Finally, we found very few examples of WGA-immunoreactive noradrenergic neurons, which suggests that there is considerable independence of the monoaminergic bulbospinal pathways. Our results indicate that 5HT neurons influence "pain" processing at the spinal cord level both directly and indirectly via feedforward connections with multiple non-5HT descending control pathways.
    The Journal of Comparative Neurology 04/2008; 507(6):1990-2003. DOI:10.1002/cne.21665 · 3.51 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although interest in descending modulation of spinal cord function dates back to the time of Sherrington, the modern era began in the late 1960s when it was shown that focal electrical stimulation in the midbrain of the rat produced analgesia sufficient to permit surgery. From this report evolved the concept of endogenous systems of pain modulation. Initial interest focused on descending inhibition of spinal nociceptive processing, but we now know that descending modulation of spinal nociceptive processing can be either inhibitory or facilitatory. As our understanding of descending facilitatory, or pro-nociceptive influences grows, so too has our appreciation of its potential importance. Accumulating evidence suggests that descending facilitatory influences may contribute to the development and maintenance of hyperalgesia and thus contribute to chronic pain states.
    Neuroscience & Biobehavioral Reviews 02/2004; 27(8):729-37. DOI:10.1016/j.neubiorev.2003.11.008 · 10.28 Impact Factor