Embryonic Stem-Derived Versus Somatic Neural Stem Cells: A Comparative Analysis of Their Developmental Potential and Molecular Phenotype

Stem Cell Research Department, Dipartmento di Biotecnologie, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy.
Stem Cells (Impact Factor: 6.52). 05/2006; 24(4):825-34. DOI: 10.1634/stemcells.2005-0313
Source: PubMed


Reliable procedures to induce neural commitment of totipotent undifferentiated embryonic stem (ES) cells have provided new tools for investigating the molecular mechanisms underlying cell fate choices. We extensively characterized the developmental potential of ES-induced neural cells obtained using an adaptation of the multistep induction protocol. We provided evidence that ES-derived neural proliferating cells are endowed with stem cell properties such as extensive self-renewal capacity and single-cell multipotency. In differentiating conditions, cells matured exclusively into neurons, astrocytes, and oligodendrocytes. All these features have been previously described in only somatic neural stem cells (NSCs). Therefore, we consider it more appropriate to rename our cells ES-derived NSCs. These similarities between the two NSC populations induced us to carefully compare their proliferation ability and differentiation potential. Although they were very similar in overall behavior, we scored specific differences. For instance, ES-derived NSCs proliferated at higher rate and consistently generated a higher number of neurons compared with somatic NSCs. To further investigate their relationships, we carried out a molecular analysis comparing their transcriptional profiles during proliferation. We observed a large fraction of shared expressed transcripts, including genes previously described to be critical in defining somatic NSC traits. Among the genes differently expressed, candidate genes possibly responsible for divergences between the two cell types were selected and further investigated. In particular, we showed that an enhanced MAPK (mitogen-activated protein kinase) signaling is acting in ES-induced NSCs, probably triggered by insulin-like growth factor-II. This may contribute to the high proliferation rate exhibited by these cells in culture.

Download full-text


Available from: Sergio Ferrari, Sep 26, 2014
  • Source
    • "NPCs derived from ESCs were cultured in medium containing 20 ng/mL EGF and 10 ng/mL FGF2 as previously described (Colombo et al. 2006). Zrf1 and Pax6 re-expression was obtained by electropoating pCBA Zrf1 3xFlag and pCBA Pax6 3xFlag (Amaxa neural stem cell kit), and selected with neomycin for 6 d. "
    [Show abstract] [Hide abstract]
    ABSTRACT: The molecular mechanisms underlying specification from embryonic stem cells (ESCs) and maintenance of neural progenitor cells (NPCs) are largely unknown. Recently, we reported that the Zuotin-related factor 1 (Zrf1) is necessary for chromatin displacement of the Polycomb-repressive complex 1 (PRC1). We found that Zrf1 is required for NPC specification from ESCs and that it promotes the expression of NPC markers, including the key regulator Pax6. Moreover, Zrf1 is essential to establish and maintain Wnt ligand expression levels, which are necessary for NPC self-renewal. Reactivation of proper Wnt signaling in Zrf1-depleted NPCs restores Pax6 expression and the self-renewal capacity. ESC-derived NPCs in vitro resemble most of the characteristics of the self-renewing NPCs located in the developing embryonic cortex, which are termed radial glial cells (RGCs). Depletion of Zrf1 in vivo impairs the expression of key self-renewal regulators and Wnt ligand genes in RGCs. Thus, we demonstrate that Zrf1 plays an essential role in NPC generation and maintenance.
    Genes & development 01/2014; 28(2):182-97. DOI:10.1101/gad.228510.113 · 10.80 Impact Factor
  • Source
    • "While there have been few direct comparisons of potentially therapeutic NSCs and MSCs [50]–[52], differences in migration and other behaviors may exist as consequences of underlying signaling pathways that will vary between stem cells of different lineages. For example, subtle distinctions have been noted between embryonic stem cell-derived and somatic NSCs in differentiation potential and proliferation [53], and MSCs of different origins differ in proliferation, differentiation potential and tumor-homing capabilities [54]–[56]. In addition, a difference in the capacity of NSC and MSC lines to deliver a therapeutic oncolytic adenovirus payload has been reported [52]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pathotropic neural stem and/or progenitor cells (NSCs) can potentially deliver therapeutic agents to otherwise inaccessible cancers. In glioma, NSCs are found in close contact with tumor cells, raising the possibility that specificity of NSC contact with glioma targets originates in the tumor cells themselves. Alternatively, target preferences may originate, at least in part, in the tumor microenvironment. To better understand mechanisms underlying NSC interactions with glioma cells, we examined NSC-target cell contacts in a highly simplified 3-dimensional peptide hydrogel (Puramatrix) in which cell behaviors can be studied in the relative absence of external cues. HB1.F3 is an immortalized clonal human NSC line extensively characterized in preclinical investigations. To study contact formation between HB1.F3 NSCs and glioma cells, we first examined co-cultures of eGFP-expressing HB1.F3 (HB1.F3.eGFP) NSCs and dsRed-expressing U251 glioma (U251.dsRed) cells. Using confocal microscopy, HB1.F3.eGFP cells were observed contacting or encircling U251.dsRed glioma cells, but never the reverse. Next, examining specificity of these contacts, no significant quantitative differences in either percentages of HB1.F3 NSCs contacting targets, or in the extent of target cell encirclement, were observed when HB1.F3.eGFP cells were presented with various potential target cells (human glioma and breast cancer cell lines, patient-derived brain tumor lines, non-tumor fibroblasts, primary mouse and human astroglial cells, and primary adult and newborn human dermal fibroblasts) except that interactions between HB1.F3 cells did not progress beyond establishing contacts. Finally cytoskeletal mechanisms employed by HB1.F3.eGFP cells varied with the substrate. When migrating in Puramatrix, HB1.F3 NSCs exhibited intermittent process extension followed by soma translocation, while during encirclement their movements were more amoeboid. We conclude that formation of contacts and subsequent encirclement of target cells by HB1.F3 NSCs is an intrinsic property of these NSCs, and that preferential contact formation with tumor cells in vivo must therefore be highly dependent on microenvironmental cues.
    PLoS ONE 12/2012; 7(12):e51859. DOI:10.1371/journal.pone.0051859 · 3.23 Impact Factor
  • Source
    • "NSCs can be isolated from mouse and human neural tissues and can be propagated for long time in cultures as neurospheres or in adhesive conditions [97–100]. Upon differentiation, NSCs generate a mixed population of GABAergic and glutamatergic neurons, whose ratio is dependent on specific growth culture and differentiation conditions [97, 101]. However, these cells show generally poor developmental plasticity. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerous neurological disorders are caused by a dysfunction of the GABAergic system that impairs or either stimulates its inhibitory action over its neuronal targets. Pharmacological drugs have generally been proved very effective in restoring its normal function, but their lack of any sort of spatial or cell type specificity has created some limitations in their use. In the last decades, cell-based therapies using GABAergic neuronal grafts have emerged as a promising treatment, since they may restore the lost equilibrium by cellular replacement of the missing/altered inhibitory neurons or modulating the hyperactive excitatory system. In particular, the discovery that embryonic ganglionic eminence-derived GABAergic precursors are able to disperse and integrate in large areas of the host tissue after grafting has provided a strong rationale for exploiting their use for the treatment of diseased brains. GABAergic neuronal transplantation not only is efficacious to restore normal GABAergic activities but can also trigger or sustain high neuronal plasticity by promoting the general reorganization of local neuronal circuits adding new synaptic connections. These results cast new light on dynamics and plasticity of adult neuronal assemblies and their associated functions disclosing new therapeutic opportunities for the near future.
    Neural Plasticity 06/2011; 2011(2090-5904):384216. DOI:10.1155/2011/384216 · 3.58 Impact Factor
Show more