Cardiac vagal modulation of heart rate during prolonged submaximal exercise in animals with healed myocardial infarctions: effects of training.

Dept. of Physiology, The Ohio State University, Columbus, OH 43210-1218, USA.
AJP Heart and Circulatory Physiology (Impact Factor: 4.01). 05/2006; 290(4):H1680-5. DOI: 10.1152/ajpheart.01034.2005
Source: PubMed

ABSTRACT The present study investigated the effects of long-duration exercise on heart rate variability [as a marker of cardiac vagal tone (VT)]. Heart rate variability (time series analysis) was measured in mongrel dogs (n = 24) with healed myocardial infarctions during 1 h of submaximal exercise (treadmill running at 6.4 km/h at 10% grade). Long-duration exercise provoked a significant (ANOVA, all P < 0.01, means +/- SD) increase in heart rate (1st min, 165.3 +/- 15.6 vs. last min, 197.5 +/- 21.5 beats/min) and significant reductions in high frequency (0.24 to 1.04 Hz) power (VT: 1st min, 3.7 +/- 1.5 vs. last min, 1.0 +/- 0.9 ln ms(2)), R-R interval range (1st min, 107.9 +/- 38.3 vs. last min, 28.8 +/- 13.2 ms), and R-R interval SD (1st min, 24.3 +/- 7.7 vs. last min 6.3 +/- 1.7 ms). Because endurance exercise training can increase cardiac vagal regulation, the studies were repeated after either a 10-wk exercise training (n = 9) or a 10-wk sedentary period (n = 7). After training was completed, long-duration exercise elicited smaller increases in heart rate (pretraining: 1st min, 156.0 +/- 13.8 vs. last min, 189.6 +/- 21.9 beats/min; and posttraining: 1st min, 149.8 +/- 14.6 vs. last min, 172.7 +/- 8.8 beats/min) and smaller reductions in heart rate variability (e.g., VT, pretraining: 1st min, 4.2 +/- 1.7 vs. last min, 0.9 +/- 1.1 ln ms(2); and posttraining: 1st min, 4.8 +/- 1.1 vs. last min, 2.0 +/- 0.6 ln ms(2)). The response to long-duration exercise did not change in the sedentary animals. Thus the heart rate increase that accompanies long-duration exercise results, at least in part, from reductions in cardiac vagal regulation. Furthermore, exercise training attenuated these exercise-induced reductions in heart rate variability, suggesting maintenance of a higher cardiac vagal activity during exercise in the trained state.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Cardiovascular disease (CVD) is the number one cause of death globally. There already exists a structured guideline to cardiac rehabilitation for CVD patients as a means of preventing recurrence(s) of any cardiac events and return to an active, healthy and satisfying lifestyle. Despite the availability of cardiac rehabilitation programs, utilisation among eligible patients has been less than 20%. The barriers to this underutilisation have been factors relating to patients, services, and professionals. An alternative approach is a home-based cardiac rehabilitation has shown some improvements in the patients’ uptake of these services. Recent developments in physiological monitoring, information processing, and communication technologies have shown potential to enable a home-based cardiac rehabilitation program for better uptake and adherence and coordination between a team of multidisciplinary carers. One approach has been to use communication technologies such as mobile phone platform to help improve the carers’ ability to give multimodal feedback to the patients regularly and enable the use of other multimedia formats.
    09/2009: pages 329-352;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Measures of resting, exercise, and recovery heart rate are receiving increasing interest for monitoring fatigue, fitness and endurance performance responses, which has direct implications for adjusting training load (1) daily during specific training blocks and (2) throughout the competitive season. However, these measures are still not widely implemented to monitor athletes' responses to training load, probably because of apparent contradictory findings in the literature. In this review I contend that most of the contradictory findings are related to methodological inconsistencies and/or misinterpretation of the data rather than to limitations of heart rate measures to accurately inform on training status. I also provide evidence that measures derived from 5-min (almost daily) recordings of resting (indices capturing beat-to-beat changes in heart rate, reflecting cardiac parasympathetic activity) and submaximal exercise (30- to 60-s average) heart rate are likely the most useful monitoring tools. For appropriate interpretation at the individual level, changes in a given measure should be interpreted by taking into account the error of measurement and the smallest important change of the measure, as well as the training context (training phase, load, and intensity distribution). The decision to use a given measure should be based upon the level of information that is required by the athlete, the marker's sensitivity to changes in training status and the practical constrains required for the measurements. However, measures of heart rate cannot inform on all aspects of wellness, fatigue, and performance, so their use in combination with daily training logs, psychometric questionnaires and non-invasive, cost-effective performance tests such as a countermovement jump may offer a complete solution to monitor training status in athletes participating in aerobic-oriented sports.
    Frontiers in Physiology 01/2014; 5:73. DOI:10.3389/fphys.2014.00073
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aim: Increased sodium/calcium exchanger activity (NCX1, an important regulator of cardiomyocyte cystolic calcium) may provoke arrhythmias. Exercise training can decrease NCX1 expression in animals with heart failure improving cytosolic calcium regulation, and could thereby reduce the risk for ventricular fibrillation (VF). Methods: To test this hypothesis, a 2-min coronary occlusion was made during the last minute of exercise in dogs with healed myocardial infarctions; 23 had VF (S, susceptible) and 13 did not (R, resistant). The animals were randomly assigned to either 10-week exercise training (progressively increasing treadmill running; S n = 9; R n = 8) or 10-week sedentary (S n = 14; R n = 5) groups. At the end of the 10-week period, the exercise + ischemia test provoked VF in sedentary but not trained susceptible dogs. On a subsequent day, cardiac tissue was harvested and NCX1 protein expression was determined by Western blot. RESULTS: In the sedentary group, NCX1 expression was significantly (ANOVA, P < 0.05) higher in susceptible compared to resistant dogs. In contrast, NCX1 levels were similar in the exercise trained resistant and susceptible animals. Conclusion: These data suggest that exercise training can restore a more normal NCX1 level in dogs susceptible to VF, improving cystolic calcium regulation and could thereby reduce the risk for sudden death following myocardial infarction.
    Frontiers in Physiology 02/2011; 2:3. DOI:10.3389/fphys.2011.00003
    This article is viewable in ResearchGate's enriched format

Full-text (2 Sources)

Available from
Oct 27, 2014