Article

Deletion of Peg10, an imprinted gene acquired from a retrotransposon, causes early embryonic lethality.

Department of Epigenetics, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan.
Nature Genetics (Impact Factor: 29.65). 02/2006; 38(1):101-6. DOI: 10.1038/ng1699
Source: PubMed

ABSTRACT By comparing mammalian genomes, we and others have identified actively transcribed Ty3/gypsy retrotransposon-derived genes with highly conserved DNA sequences and insertion sites. To elucidate the functions of evolutionarily conserved retrotransposon-derived genes in mammalian development, we produced mice that lack one of these genes, Peg10 (paternally expressed 10), which is a paternally expressed imprinted gene on mouse proximal chromosome 6. The Peg10 knockout mice showed early embryonic lethality owing to defects in the placenta. This indicates that Peg10 is critical for mouse parthenogenetic development and provides the first direct evidence of an essential role of an evolutionarily conserved retrotransposon-derived gene in mammalian development.

0 Followers
 · 
177 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic imprinting is an inheritance phenomenon by which a subset of genes are expressed from one allele of two homologous chromosomes in a parent of origin-specific manner. Even though fine-tuned regulation of genomic imprinting process is essential for normal development, no other means are available to study genomic imprinting in human during embryonic development. In relation with this bottleneck, differentiation of human embryonic stem cells (hESCs) into specialized lineages may be considered as an alternative to mimic human development. In this study, hESCs were differentiated into three lineage cell types to analyze temporal and spatial expression of imprinted genes. Of 19 imprinted genes examined, 15 imprinted genes showed similar transcriptional level among two hESC lines and two human induced pluripotent stem cell (hiPSC) lines. Expressional patterns of most imprinted genes were varied in progenitors and fully differentiated cells which were derived from hESCs. Also, no consistence was observed in the expression pattern of imprinted genes within an imprinting domain during in vitro differentiation of hESCs into three lineage cell types. Transcriptional expression of imprinted genes is regulated in a cell type- specific manner in hESCs during in vitro differentiation.
    11/2014; 7(2):108-117. DOI:10.15283/ijsc.2014.7.2.108
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identifying the genetic input for fetal growth will help to understand common, serious complications of pregnancy such as fetal growth restriction. Genomic imprinting is an epigenetic process that silences one parental allele, resulting in monoallelic expression. Imprinted genes are important in mammalian fetal growth and development. Evidence has emerged showing that genes that are paternally expressed promote fetal growth, whereas maternally expressed genes suppress growth. We have assessed whether the expression levels of key imprinted genes correlate with fetal growth parameters during pregnancy, either early in gestation, using chorionic villus samples (CVS), or in term placenta. We have found that the expression of paternally expressing insulin-like growth factor 2 (IGF2), its receptor IGF2R, and the IGF2/IGF1R ratio in CVS tissues significantly correlate with crown-rump length and birthweight, whereas term placenta expression shows no correlation. For the maternally expressing pleckstrin homology-like domain family A, member 2 (PHLDA2), there is no correlation early in pregnancy in CVS but a highly significant negative relationship in term placenta. Analysis of the control of imprinted expression of PHLDA2 gave rise to a maternally and compounded grand-maternally controlled genetic effect with a birthweight increase of 93/155 g, respectively, when one copy of the PHLDA2 promoter variant is inherited. Expression of the growth factor receptor-bound protein 10 (GRB10) in term placenta is significantly negatively correlated with head circumference. Analysis of the paternally expressing delta-like 1 homologue (DLK1) shows that the paternal transmission of type 1 diabetes protective G allele of rs941576 single nucleotide polymorphism (SNP) results in significantly reduced birth weight (-132 g). In conclusion, we have found that the expression of key imprinted genes show a strong correlation with fetal growth and that for both genetic and genomics data analyses, it is important not to overlook parent-of-origin effects.
    Philosophical Transactions of The Royal Society B Biological Sciences 03/2015; 370(1663). DOI:10.1098/rstb.2014.0074 · 6.31 Impact Factor
  • Source
    Journal of Mammalian Ova Research 10/2011; 28(4):203-218. DOI:10.1274/jmor.28.203