Article

Defective planar cell polarity in polycystic kidney disease.

Gene Expression and Disease Unit, Centre National de la Recherche Scientifique (CNRS) FRE 2850, Pasteur Institute, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France.
Nature Genetics (Impact Factor: 29.65). 02/2006; 38(1):21-3. DOI: 10.1038/ng1701
Source: PubMed

ABSTRACT Morphogenesis involves coordinated proliferation, differentiation and spatial distribution of cells. We show that lengthening of renal tubules is associated with mitotic orientation of cells along the tubule axis, demonstrating intrinsic planar cell polarization, and we demonstrate that mitotic orientations are significantly distorted in rodent polycystic kidney models. These results suggest that oriented cell division dictates the maintenance of constant tubule diameter during tubular lengthening and that defects in this process trigger renal tubular enlargement and cyst formation.

1 Follower
 · 
103 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Author Summary Many of the tissues in our bodies are built up around complex arrays of elongated cellular tubes, which permit the entry, exit, and transport of essential molecules such as oxygen, glucose, and water. These tubes often arise as short buds, which elongate dramatically as the organ grows. We sought to understand the mechanisms that govern such transformations of shape using the fly renal tubule as a model. We find that elongation of this tissue is predominantly driven by cell rearrangement. Cells move around the circumference of the tubule, intercalating with each other so that the cell number around the lumen reduces, while increasing along the length of the tube. Our next question was how cells sense the direction in which they should move. We show that cells orient their position in the tissue by reading a signal sent out by a specific pair of cells at the tip of each tube. Cells use this directional information to make polarised movements through the asymmetric activity of the cell's contractile machinery. We find that the activity of myosin—the motor protein that regulates contraction—is pulsatile and polarised within the cell. This activity shortens the cells' circumferential lengths, so that cells move past each other around the tube circumference, thereby intercalating and producing tube elongation. We go on to show that excretory physiology is severely impaired when elongation fails, underlining the importance of sculpting organs with appropriate dimensions.
    PLoS Biology 12/2014; 12(12):e1002013. DOI:10.1371/journal.pbio.1002013 · 11.77 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Communication between cortical cell polarity cues and the mitotic spindle ensures proper orientation of cell divisions within complex tissues. Defects in mitotic spindle positioning have been linked to various developmental disorders and have recently emerged as a potential contributor to tumorigenesis. Despite the importance of this process to human health, the molecular mechanisms that regulate spindle orientation are not fully understood. Moreover, it remains unclear how diverse cortical polarity complexes might cooperate to influence spindle positioning. We and others have demonstrated spindle orientation roles for Dishevelled (Dsh), a key regulator of planar cell polarity, and Discs large (Dlg), a conserved apico-basal cell polarity regulator, effects which were previously thought to operate within distinct molecular pathways. Here we identify a novel direct interaction between the Dsh-PDZ domain and the alternatively spliced "I3-insert" of the Dlg-Hook domain, thus establishing a potential convergent Dsh/Dlg pathway. Furthermore, we identify a Dlg sequence motif necessary for the Dsh interaction that shares homology to the site of Dsh binding in the Frizzled receptor. Expression of Dsh enhanced Dlg-mediated spindle positioning similar to deletion of the Hook domain. This Dsh-mediated activation was dependent on the Dlg-binding partner, GukHolder (GukH). These results suggest that Dsh binding may regulate core interdomain conformational dynamics previously described for Dlg. Together, our results identify Dlg as an effector of Dsh signaling and demonstrate a Dsh-mediated mechanism for the activation of Dlg/GukH-dependent spindle positioning. Cooperation between these two evolutionarily-conserved cell polarity pathways could have important implications to both the development and maintenance of tissue homeostasis in animals.
    PLoS ONE 12/2014; 9(12):e114235. DOI:10.1371/journal.pone.0114235 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A single epithelial tubule undergoes morphogenesis to form a functional shape during the development of internal organs; however, the mechanical processes that are directed by the molecular signals regulating tubular morphogenesis are poorly understood. Here, axial tubular buckling triggered by cell proliferation is shown to drive the morphogenesis of murine epididymal tubules through mechanical interactions between the developing epithelial tubule and its surrounding tissues. Through immunofluorescence labeling and mathematical modeling, epididymal tubule shape formation is found to depend on two factors: cell proliferation area in the tubule and mechanical resistance from the tissues surrounding the tubule. Moreover, experimental perturbations of these two factors alter the shape of the epididymal tubule as predicted by the mathematical model, suggesting that the shape of the epididymal tubule spontaneously emerges through mechanical coupling between developing tissues instead of by growing according to a predetermined fate.
    Cell Reports 11/2014; 9(3):866-873. DOI:10.1016/j.celrep.2014.09.041 · 7.21 Impact Factor

Full-text (2 Sources)

Download
97 Downloads
Available from
Jun 2, 2014