Article

Tetrahydrobiopterin, but not L-arginine, decreases NO synthase uncoupling in cells expressing high levels of endothelial NO synthase.

Department of Nephrology and Hypertension, Institute and Graduate School of Biomembranes, University Medical Centre, Utrecht, The Netherlands.
Hypertension (Impact Factor: 7.63). 01/2006; 47(1):87-94. DOI: 10.1161/01.HYP.0000196735.85398.0e
Source: PubMed

ABSTRACT Endothelial NO synthase (eNOS) produces superoxide when depleted of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH4) and L-arginine by uncoupling the electron flow from NO production. High expression of eNOS has been reported to have beneficial effects in atherosclerotic arteries after relatively short periods of time. However, sustained high expression of eNOS may have disadvantageous vascular effects because of uncoupling. We investigated NO and reactive oxygen species (ROS) production in a microvascular endothelial cell line (bEnd.3) with sustained high eNOS expression and absent inducible NOS and neuronal NOS expression using 4,5-diaminofluorescein diacetate and diacetyldichlorofluorescein as probes, respectively. Unstimulated cells produced both NO and ROS. After stimulation with vascular endothelial growth factor (VEGF), NO and ROS production increased. VEGF-induced ROS production was even further increased by the addition of extra L-arginine. Nomega-nitro-L-arginine methyl ester decreased ROS production. These findings strongly suggest that eNOS is a source of ROS in these cells. Although BH4 levels were increased as compared with another endothelial cell line, eNOS levels were >2 orders of magnitude higher. The addition of BH4 resulted in increased NO production and decreased generation of ROS, indicating that bEnd.3 cells produce ROS through eNOS uncoupling because of relative BH4 deficiency. Nevertheless, eNOS-dependent ROS production was not completely abolished by the addition of BH4, suggesting intrinsic superoxide production by eNOS. This study indicates that potentially beneficial sustained increases in eNOS expression and activity could lead to eNOS uncoupling and superoxide production as a consequence. Therefore, sustained increases of eNOS or VEGF activity should be accompanied by concomitant supplementation of BH4.

Full-text

Available from: Marianne Verhaar, Apr 26, 2015
0 Followers
 · 
104 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tetrahydrobiopterin (BH4) is an essential cofactor for the production of nitric oxide (NO) and supplementation with BH4 improves NO-dependent vasodilation. NO also reduces sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle. Thus, we hypothesized that supplementation with BH4 would blunt sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle. Sprague-Dawley rats (n = 15, 399 ± 57 g) were anesthetized and instrumented with an indwelling brachial artery catheter, femoral artery flow probe, and a stimulating electrode on the lumbar sympathetic chain. Triceps surae muscles were stimulated to contract rhythmically at 30% and 60% of maximal contractile force (MCF). The percentage change of femoral vascular conductance (%FVC) in response to sympathetic stimulations delivered at 2 and 5 Hz was determined at rest and during muscle contraction in control and acute BH4 supplementation (20 mg·kg−1 + 10 mg·kg−1·h−1, IA) conditions. BH4 reduced (P < 0.05) the vasoconstrictor response to sympathetic stimulation (i.e., decrease in FVC) at rest (Control: 2 Hz: −28 ± 5%FVC; 5 Hz: −45 ± 5%; BH4: 2 Hz: −17 ± 4%FVC; 5 Hz: −34 ± 7%FVC) and during muscular contraction at 30% MCF (Control: 2 Hz: −14 ± 6%FVC; 5 Hz: −28 ± 11%; BH4: 2 Hz: −6 ± 6%FVC; 5 Hz: −16 ± 10%) and 60% MCF (Control: 2 Hz: −7 ± 3%FVC; 5 Hz: −16 ± 6%FVC; BH4: 2 Hz: −2 ± 3%FVC; 5 Hz: −11 ± 6%FVC). These data are consistent with our hypothesis that acute BH4 supplementation decreases sympathetic vasoconstrictor responsiveness in resting and contracting skeletal muscle.
    10/2014; 2(10). DOI:10.14814/phy2.12164
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pulmonary hypertension is a condition characterized by vasoconstriction, vascular cell proliferation, inflammation, microthrombosis, and vessel wall remodelation. Pulmonary endothelial cells produce vasoactive substances with vasoconstrictive as well as vasodilatative effects. The imbalance of these endothelium-derived vasoactive substances induced by endothelial dysfunction is very important in the pathogenesis of PH. One of most important substances with vasodilatative effect is nitric oxide. We provide a comprehensive insight into role of NO in the pathgenesis of PH and discuss perspectives and challenges in PH therapy based on NO administration.
    Vitamins & Hormones 09/2014; 96. DOI:10.1016/B978-0-12-800254-4.00016-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Elevated plasma levels of free fatty acids (FFA) are associated with increased cardiovascular risk. This may be related to FFA-induced elevation of oxidative stress in endothelial cells. We hypothesized that, in addition to mitochondrial production of reactive oxygen species, endothelial nitric oxide synthase (eNOS)-mediated reactive oxygen species production contributes to oleic acid (OA)-induced oxidative stress in endothelial cells, due to eNOS uncoupling. We measured reactive oxygen species production and eNOS activity in cultured endothelial cells (bEnd.3) in the presence of OA bound to bovine serum albumin, using the CM-H2DCFDA assay and the L-arginine/citrulline conversion assay, respectively. OA induced a concentration-dependent increase in reactive oxygen species production, which was inhibited by the mitochondrial complex II inhibitor thenoyltrifluoroacetone (TTFA). OA had little effect on eNOS activity when stimulated by a calcium-ionophore, but decreased both basal and insulin-induced eNOS activity, which was restored by TTFA. Pretreatment of bEnd.3 cells with tetrahydrobiopterin (BH4) prevented OA-induced reactive oxygen species production and restored inhibition of eNOS activity by OA. Elevation of OA levels leads to both impairment in receptor-mediated stimulation of eNOS and to production of mitochondrial-derived reactive oxygen species and hence endothelial dysfunction.
    European Journal of Pharmacology 01/2015; DOI:10.1016/j.ejphar.2015.01.005