Article

The mammalian Scribble polarity protein regulates epithelial cell adhesion and migration through E-cadherin

Center for Cell Signaling, Department of Microbiology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
The Journal of Cell Biology (Impact Factor: 9.69). 01/2006; 171(6):1061-71. DOI: 10.1083/jcb.200506094
Source: PubMed

ABSTRACT Scribble (Scrib) is a conserved polarity protein required in Drosophila melanogaster for synaptic function, neuroblast differentiation, and epithelial polarization. It is also a tumor suppressor. In rodents, Scrib has been implicated in receptor recycling and planar polarity but not in apical/basal polarity. We now show that knockdown of Scrib disrupts adhesion between Madin-Darby canine kidney epithelial cells. As a consequence, the cells acquire a mesenchymal appearance, migrate more rapidly, and lose directionality. Although tight junction assembly is delayed, confluent monolayers remain polarized. These effects are independent of Rac activation or Scrib binding to betaPIX. Rather, Scrib depletion disrupts E-cadherin-mediated cell-cell adhesion. The changes in morphology and migration are phenocopied by E-cadherin knockdown. Adhesion is partially rescued by expression of an E-cadherin-alpha-catenin fusion protein but not by E-cadherin-green fluorescent protein. These results suggest that Scrib stabilizes the coupling between E-cadherin and the catenins and are consistent with the idea that mammalian Scrib could behave as a tumor suppressor by regulating epithelial cell adhesion and migration.

0 Followers
 · 
146 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The γ subunit of the major histocompatibility complex (MHC) class II complex, CD74, is overexpressed in a significant proportion of metastatic breast tumors, but the mechanistic foundation and biologic significance of this phenomenon are not fully understood. Here, we show that when CD74 is overexpressed in human cancer and noncancerous epithelial cells, it interacts and interferes with the function of Scribble, a product of a well-known tumor suppressor gene. Furthermore, using epithelial cell lines expressing CD74 under the control of tetracycline-inducible promoter and quantitative high-resolution mass spectrometry, we demonstrate that, as a result of CD74 overexpression, the phosphorylation pattern of the C-terminal part of Scribble undergoes specific changes. This is accompanied with a translocation of the protein from the sites of cell-to-cell contacts at the plasma membrane to the cytoplasm, which is likely to effectively enhance the motility and invasiveness of the cancer cells.
    Neoplasia (New York, N.Y.) 06/2013; 15(6):660-8. DOI:10.1593/neo.13464 · 5.40 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epithelial junctions depend on intercellular interactions between β(1) subunits of the Na(+)/K(+)-ATPase molecules of neighboring cells. The interaction between dog and rat subunits is less effective than the interaction between two dog β(1) subunits, indicating the importance of species-specific regions for β(1)-β(1) binding. To identify these regions, the species-specific amino acid residues were mapped on a high-resolution structure of the Na(+)/K(+)-ATPase β(1) subunit to select those exposed towards the β(1) subunit of the neighboring cell. These exposed residues were mutated in both dog and rat YFP-linked β(1) subunits (YFP-β(1)) and also in the secreted extracellular domain of the dog β(1) subunit. Five rat-like mutations in the amino acid region spanning residues 198-207 of the dog YFP-β(1) expressed in Madin-Darby canine kidney (MDCK) cells decreased co-precipitation of the endogenous dog β(1) subunit with YFP-β(1) to the level observed between dog β(1) and rat YFP-β(1). In parallel, these mutations impaired the recognition of YFP-β(1) by the dog-specific antibody that inhibits cell adhesion between MDCK cells. Accordingly, dog-like mutations in rat YFP-β(1) increased both the (YFP-β(1))-β(1) interaction in MDCK cells and recognition by the antibody. Conversely, rat-like mutations in the secreted extracellular domain of the dog β(1) subunit increased its interaction with rat YFP-β(1) in vitro. In addition, these mutations resulted in a reduction of intercellular adhesion between rat lung epithelial cells following addition of the secreted extracellular domain of the dog β(1) subunit to a cell suspension. Therefore, the amino acid region 198-207 is crucial for both trans-dimerization of the Na(+)/K(+)-ATPase β(1) subunits and cell-cell adhesion.
    Journal of Cell Science 02/2012; 125(Pt 6):1605-16. DOI:10.1242/jcs.100149 · 5.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By analyzing public data sets of gene expression in human breast cancers we observed that increased levels of transcripts encoding the planar cell polarity (PCP) proteins SCRIB and VANGL1 correlate with increased risk of patient relapse. Experimentally, we found that reducing expression of SCRIB by short-hairpin RNAs (shRNAs) reduces the growth of human breast cancer cells in xenograft assays. To investigate SCRIB-associated proteins that might participate in the responses of breast cancer cells to altered levels of SCRIB, we used mass spectrometry and confocal microscopy. These studies reveal that SCRIB is present in at least two unique protein complexes: (1) a complex of SCRIB, ARHGEF, GIT and PAK (p21-activated kinase), and (2) a complex of SCRIB, NOS1AP and VANGL. Focusing on NOS1AP, we observed that NOS1AP colocalizes with both SCRIB and VANGL1 along cellular protrusions in metastatic breast cancer cells, but does not colocalize with either SCRIB or VANGL1 at cell junctions in normal breast cells. We investigated the effects of shRNA-mediated knockdown of NOS1AP and SCRIB in vitro, and found that reducing NOS1AP and SCRIB slows breast cancer cell migration and prevents the establishment of leading-trailing polarity. We also find that reduction of NOS1AP enhances anchorage-independent growth. Collectively these data point to the relevance of NOS1AP and SCRIB protein complexes in breast cancer.
    Oncogene 12/2011; 31(32):3696-708. DOI:10.1038/onc.2011.528 · 8.56 Impact Factor