Article

Maximum aerobic performance in lines of Mus selected for high wheel-running activity: effects of selection, oxygen availability and the mini-muscle phenotype.

Department of Biology, University of California, Riverside, CA 92521, USA.
Journal of Experimental Biology (Impact Factor: 3.24). 02/2006; 209(Pt 1):115-27. DOI: 10.1242/jeb.01883
Source: PubMed

ABSTRACT We compared maximum aerobic capacity during forced exercise (VO2max) in hypoxia (PO2=14% O2), normoxia (21%) and hyperoxia (30%) of lines of house mice selectively bred for high voluntary wheel running (S lines) with their four unselected control (C) lines. We also tested for pleiotropic effects of the ;mighty mini-muscle' allele, a Mendelian recessive that causes a 50% reduction in hind limb muscle but a doubling of mass-specific aerobic enzyme activity, among other pleiotropic effects. VO2max of female mice was measured during forced exercise on a motorized treadmill enclosed in a metabolic chamber that allowed altered PO2. Individual variation in VO2max was highly repeatable within each PO2, and values were also significantly correlated across PO2. Analysis of covariance showed that S mice had higher body-mass-adjusted VO2max than C at all PO2, ranging from +10.7% in hypoxia to +20.8% in hyperoxia. VO2max of S lines increased practically linearly with PO2, whereas that of C lines plateaued from normoxia to hyperoxia, and respiratory exchange ratio (=CO2 production/VO2max) was lower for S lines. These results suggest that the physiological underpinnings of VO2max differ between the S and C lines. Apparently, at least in S lines, peripheral tissues may sustain higher rates of oxidative metabolism if central organs provide more O2. Although the existence of central limitations in S lines cannot be excluded based solely on the present data, we have previously reported that both S and C lines can attain considerably higher VO2max during cold exposure in a He-O2 atmosphere, suggesting that limitations on VO2max depend on interactions between the central and peripheral organs involved. In addition, mini-muscle individuals had higher VO2max than did those with normal muscles, suggesting that the former might have higher hypoxia tolerance. This would imply that the mini-muscle phenotype could be a good model to test how exercise performance and hypoxia tolerance could evolve in a correlated fashion, as previous researchers have suggested.

0 Bookmarks
 · 
74 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased brain size, relative to body mass, is a primary characteristic distinguishing the mammalian lineage. This greater encephalization has come with increased behavioral complexity and, accordingly, it has been suggested that selection on behavioral traits has been a significant factor leading to the evolution of larger whole-brain mass. In addition, brains may evolve in a mosaic fashion, with functional components having some freedom to evolve independently from other components, irrespective of, or in addition to, changes in size of the whole brain. We tested whether long-term selective breeding for high voluntary wheel running in laboratory house mice results in changes in brain size, and whether those changes have occurred in a concerted or mosaic fashion. We measured wet and dry brain mass via dissections and brain volume with ex vivo magnetic resonance imaging of brains that distinguished the caudate-putamen, hippocampus, midbrain, cerebellum and forebrain. Adjusting for body mass as a covariate, mice from the four replicate high-runner (HR) lines had statistically larger non-cerebellar wet and dry brain masses than those from four non-selected control lines, with no differences in cerebellum wet or dry mass or volume. Moreover, the midbrain volume in HR mice was ~13% larger (P<0.05), while volumes of the caudate-putamen, hippocampus, cerebellum and forebrain did not differ statistically between HR and control lines. We hypothesize that the enlarged midbrain of HR mice is related to altered neurophysiological function in their dopaminergic system. To our knowledge, this is the first example in which selection for a particular mammalian behavior has been shown to result in a change in size of a specific brain region.
    Journal of Experimental Biology 02/2013; 216(Pt 3):515-23. · 3.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The hunting and gathering lifestyle adopted by human ancestors around 2 Ma required a large increase in aerobic activity. High levels of physical activity altered the shape of the human body, enabling access to new food resources (e.g. animal protein) in a changing environment. Recent experimental work provides strong evidence that both acute bouts of exercise and long-term exercise training increase the size of brain components and improve cognitive performance in humans and other taxa. However, to date, researchers have not explored the possibility that the increases in aerobic capacity and physical activity that occurred during human evolution directly influenced the human brain. Here, we hypothesize that proximate mechanisms linking physical activity and neurobiology in living species may help to explain changes in brain size and cognitive function during human evolution. We review evidence that selection acting on endurance increased baseline neurotrophin and growth factor signalling (compounds responsible for both brain growth and for metabolic regulation during exercise) in some mammals, which in turn led to increased overall brain growth and development. This hypothesis suggests that a significant portion of human neurobiology evolved due to selection acting on features unrelated to cognitive performance.
    Proceedings of the Royal Society B: Biological Sciences 01/2013; 280(1750):20122250. · 5.68 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exercise is known to be rewarding and have positive effects on mental and physical health. Excessive exercise, however, can be the result of an underlying behavioral/physiological addiction. Both humans who exercise regularly and rodent models of exercise addiction sometimes display behavioral withdrawal symptoms, including depression and anxiety, when exercise is denied. However, few studies have examined the physiological state that occurs during this withdrawal period. Alterations in blood pressure (BP) are common physiological indicators of withdrawal in a variety of addictions. In this study, we examined exercise withdrawal in four replicate lines of mice selectively bred for high voluntary wheel running (HR lines). Mice from the HR lines run almost 3-fold greater distances on wheels than those from non-selected control lines, and have altered brain activity as well as increased behavioral despair when wheel access is removed. We tested the hypothesis that male HR mice have an altered cardiovascular response (heart rate, systolic, diastolic, and mean arterial pressure [MAP]) during exercise withdrawal. Measurements using an occlusion tail-cuff system were taken during 8days of baseline, 6days of wheel access, and 2days of withdrawal (wheel access blocked). During withdrawal, HR mice had significantly lower systolic BP, diastolic BP, and MAP than controls, potentially indicating a differential dependence on voluntary wheel running in HR mice. This is the first characterization of a cardiovascular withdrawal response in an animal model of high voluntary exercise.
    Physiology & Behavior 02/2013; · 3.16 Impact Factor

Full-text (2 Sources)

View
11 Downloads
Available from
May 26, 2014