Article

Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage.

Elixir Pharmaceuticals, Inc., One Kendall Square, Cambridge, MA 02139, USA.
Molecular and Cellular Biology (Impact Factor: 5.04). 02/2006; 26(1):28-38. DOI: 10.1128/MCB.26.1.28-38.2006
Source: PubMed

ABSTRACT Human SIRT1 is an enzyme that deacetylates the p53 tumor suppressor protein and has been suggested to modulate p53-dependent functions including DNA damage-induced cell death. In this report, we used EX-527, a novel, potent, and specific small-molecule inhibitor of SIRT1 catalytic activity to examine the role of SIRT1 in p53 acetylation and cell survival after DNA damage. Treatment with EX-527 dramatically increased acetylation at lysine 382 of p53 after different types of DNA damage in primary human mammary epithelial cells and several cell lines. Significantly, inhibition of SIRT1 catalytic activity by EX-527 had no effect on cell growth, viability, or p53-controlled gene expression in cells treated with etoposide. Acetyl-p53 was also increased by the histone deacetylase (HDAC) class I/II inhibitor trichostatin A (TSA). EX-527 and TSA acted synergistically to increase acetyl-p53 levels, confirming that p53 acetylation is regulated by both SIRT1 and HDACs. While TSA alone reduced cell survival after DNA damage, the combination of EX-527 and TSA had no further effect on cell viability and growth. These results show that, although SIRT1 deacetylates p53, this does not play a role in cell survival following DNA damage in certain cell lines and primary human mammary epithelial cells.

0 Followers
 · 
83 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Silent information regulators (SIRT)s have been shown to deacetylate a range of metabolic enzymes, including those in glycolysis and the Krebs cycle, and thus alter their activity. SIRTs require NAD+ for their activity; this linking cellular energy status to enzyme activity. Here, to examine the impact of SIRT1 modulation on oxidative metabolism, we tested the effect of ligands which are either SIRT activating compounds (STACs; resveratrol and SRT1720) or inhibitors (STICs; EX527) on the metabolism of 13C-enriched substrates by Guinea pig brain cortical tissue slices using 13C and 1H NMR spectroscopy. Resveratrol increased lactate labelling but decreased incorporation of 13C into Krebs cycle intermediates consistent with effects on AMP-activated protein kinase (AMPK) and inhibition of the F0/F1ATPase. Testing resveratrol directly applied to astrocytes using a Seahorse analyzer found increased glycolytic shift and increased mitochondrial proton leak due to interactions of resveratrol with the mitochondrial electron transport chain. SRT1720, by contrast, stimulated incorporation of 13C into Krebs cycle intermediates and reduced incorporation into lactate, while the inhibitor EX527 paradoxically also increased Krebs cycle 13C incorporation. In summary, the various SIRT1 modulators show distinct, acute effects on oxidative metabolism. The strong effects of resveratrol on the mitochondrial respiratory chain and on glycolysis suggest caution should be used in attempts to increase bioavailability of this compound in the central nervous system.
    Journal of Neuroscience Research 02/2015; 93:1147-1156. DOI:10.1002/jnr.23570 · 2.73 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stem cells (MSCs) senescence is an age-related process that impairs the capacity for tissue repair and compromises the clinical use of autologous MSCs for tissue regeneration. Here, we describe the effects of SIRT1, a NAD(+)-dependent deacetylase, on age-related MSCs senescence. Knockdown of SIRT1 in young MSCs induced cellular senescence and inhibited cell proliferation whereas overexpression of SIRT1 in aged MSCs reversed the senescence phenotype and stimulated cell proliferation. These results suggest that SIRT1 plays a key role in modulating age-induced MSCs senescence. Aging-related proteins, P16 and P21 may be downstream effectors of the SIRT1-mediated anti-aging effects. SIRT1 protected MSCs from age-related DNA damage, induced telomerase reverse transcriptase (TERT) expression and enhanced telomerase activity but did not affect telomere length. SIRT1 positively regulated the expression of tripeptidyl peptidase 1 (TPP1), a component of the shelterin pathway that protects chromosome ends from DNA damage. Together, the results demonstrate that SIRT1 quenches age-related MSCs senescence by mechanisms that include enhanced TPP1 expression, increased telomerase activity and reduced DNA damage.
    Frontiers in Aging Neuroscience 06/2014; 6:103. DOI:10.3389/fnagi.2014.00103 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sirtuin 1 (SIRT1) exerts a neuroprotective effect in various neurologic diseases. Here we investigated the protective functions of SIRT1 in astrocytes, which are the most abundant cells in the central nervous system. Upregulation of SIRT1 suppressed the expression levels of pro-inflammatory cytokines and increased the expression levels of superoxide dismutase 2 and catalase. Inversely, inhibition of SIRT1 significantly increased acetylation of forkhead box protein O4, decreased the expression levels of superoxide dismutase 2 and catalase, and increased the production of reactive oxygen species. Our data suggest that astrocytic SIRT1 may elicit neuroprotective effects through its anti-oxidative and anti-inflammatory functions.
    Journal of neuroimmunology 04/2014; DOI:10.1016/j.jneuroim.2014.02.001 · 2.79 Impact Factor

Preview

Download
1 Download
Available from