The design of transcription-factor binding sites is affected by combinatorial regulation

Department of Molecular Genetics, Weizmann Institute of Science, 76100 Rehovot, Israel.
Genome biology (Impact Factor: 10.47). 02/2005; 6(12):R103. DOI: 10.1186/gb-2005-6-12-r103
Source: PubMed

Transcription factors regulate gene expression by binding to specific cis-regulatory elements in gene promoters. Although DNA sequences that serve as transcription-factor binding sites have been characterized and associated with the regulation of numerous genes, the principles that govern the design and evolution of such sites are poorly understood.
Using the comprehensive mapping of binding-site locations available in Saccharomyces cerevisiae, we examined possible factors that may have an impact on binding-site design. We found that binding sites tend to be shorter and fuzzier when they appear in promoter regions that bind multiple transcription factors. We further found that essential genes bind relatively fewer transcription factors, as do divergent promoters. We provide evidence that novel binding sites tend to appear in specific promoters that are already associated with multiple sites.
Two principal models may account for the observed correlations. First, it may be that the interaction between multiple factors compensates for the decreased specificity of each specific binding sequence. In such a scenario, binding-site fuzziness is a consequence of the presence of multiple binding sites. Second, binding sites may tend to appear in promoter regions that are subject to low selective pressure, which also allows for fuzzier motifs. The latter possibility may account for the relatively low number of binding sites found in promoters of essential genes and in divergent promoters.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In vertebrates, conserved noncoding elements (CNEs) are functionally constrained sequences that can show striking conservation over >400 million years of evolutionary distance and frequently are located megabases away from target developmental genes. Conserved noncoding sequences (CNSs) in plants are much shorter, and it has been difficult to detect conservation among distantly related genomes. In this article, we show not only that CNS sequences can be detected throughout the eudicot clade of flowering plants, but also that a subset of 37 CNSs can be found in all flowering plants (diverging ∼170 million years ago). These CNSs are functionally similar to vertebrate CNEs, being highly associated with transcription factor and development genes and enriched in transcription factor binding sites. Some of the most highly conserved sequences occur in genes encoding RNA binding proteins, particularly the RNA splicing-associated SR genes. Differences in sequence conservation between plants and animals are likely to reflect differences in the biology of the organisms, with plants being much more able to tolerate genomic deletions and whole-genome duplication events due, in part, to their far greater fecundity compared with vertebrates.
    The Plant Cell 03/2014; 26(3). DOI:10.1105/tpc.113.121905 · 9.58 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Requirements for gene regulation vary widely both within and among species. Some genes are constitutively expressed, whereas other genes require complex regulatory control. Transcriptional regulation is often controlled by a module of multiple transcription factor binding sites that, in combination, mediate the expression of a target gene. Here, we study how such regulatory modules evolve in response to natural selection. Using a population-genetic model, we show that complex regulatory modules which contain a larger number of binding sites must employ binding motifs that are less specific, on average, compared with smaller regulatory modules. This effect is extremely general, and it holds regardless of the selected binding logic that a module experiences. We attribute this phenomenon to the inability of stabilizing selection to maintain highly specific sites in large regulatory modules. Our analysis helps to explain broad empirical trends in the Saccharomyces cerevisiae regulatory network: those genes with a greater number of distinct transcriptional regulators feature less-specific binding motifs, compared with genes with fewer regulators. Our results also help to explain empirical trends in module size and motif specificity across species, ranging from prokaryotes to single-cellular and multi-cellular eukaryotes.
    Proceedings of the Royal Society B: Biological Sciences 08/2013; 280(1768):20131313. DOI:10.1098/rspb.2013.1313 · 5.29 Impact Factor
  • Source


Available from