Specific microRNAs modulate embryonic stem cell-derived neurogenesis.

Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Stem Cells (Impact Factor: 7.13). 05/2006; 24(4):857-64. DOI: 10.1634/stemcells.2005-0441
Source: PubMed

ABSTRACT MicroRNAs (miRNAs) are recently discovered small non-coding transcripts with a broad spectrum of functions described mostly in invertebrates. As post-transcriptional regulators of gene expression, miRNAs trigger target mRNA degradation or translational repression. Although hundreds of miRNAs have been cloned from a variety of mammalian tissues and cells and multiple mRNA targets have been predicted, little is known about their functions. So far, a role of miRNA has only been described in hematopoietic, adipocytic, and muscle differentiation; regulation of insulin secretion; and potentially regulation of cancer growth. Here, we describe miRNA expression profiling in mouse embryonic stem (ES) cell- derived neurogenesis in vitro and show that a number of miRNAs are simultaneously co-induced during differentiation of neural progenitor cells to neurons and astrocytes. There was a clear correlation between miRNA expression profiles in ES cell-derived neurogenesis in vitro and in embryonal neurogenesis in vivo. Using both gain-of-function and loss-of-function approaches, we demonstrate that brain-specific miR-124a and miR-9 molecules affect neural lineage differentiation in the ES cell-derived cultures. In addition, we provide evidence that signal transducer and activator of transcription (STAT) 3, a member of the STAT family pathway, is involved in the function of these miRNAs. We conclude that distinct miRNAs play a functional role in the determination of neural fates in ES cell differentiation.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The advent of cell reprogramming technologies has widely disclosed the possibility to have direct access to human neurons for experimental and biomedical applications. Human pluripotent stem cells can be instructed in vitro to generate specific neuronal cell types as well as different glial cells. Moreover, new approaches of direct neuronal cell reprogramming can strongly accelerate the generation of different neuronal lineages. However, genetic heterogeneity, reprogramming fidelity, and time in culture of the starting cells can still significantly bias their differentiation efficiency and quality of the neuronal progenies. In addition, reprogrammed human neurons exhibit a very slow pace in gaining a full spectrum of functional properties including physiological levels of membrane excitability, sustained and prolonged action potential firing, mature synaptic currents and synaptic plasticity. This delay poses serious limitations for their significance as biological experimental model and screening platform. We will discuss new approaches of neuronal cell differentiation and reprogramming as well as methods to accelerate the maturation and functional activity of the converted human neurons. © 2015 by the Society for Experimental Biology and Medicine.
    Experimental Biology and Medicine 03/2015; DOI:10.1177/1535370215577585 · 2.23 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNA-9 (miR-9) has been shown to promote the differentiation of bone marrow mesenchymal stem cells into neuronal cells, but the precise mechanism is unclear. Our previous study confirmed that increased autophagic activity improved the efficiency of neuronal differentiation in bone marrow mesenchymal stem cells. Accumulating evidence reveals that miRNAs adjust the autophagic pathways. This study used miR-9-1 lentiviral vector and miR-9-1 inhibitor to modulate the expression level of miR-9. Autophagic activity and neuronal differentiation were measured by the number of light chain-3 (LC3)-positive dots, the ratio of LC3-II/LC3, and the expression levels of the neuronal markers enolase and microtubule-associated protein 2. Results showed that LC3-positive dots, the ratio of LC3-II/LC3, and expression of neuron specific enolase and microtubule-associated protein 2 increased in the miR-9(+) group. The above results suggest that autophagic activity increased and bone marrow mesenchymal stem cells were prone to differentiate into neuronal cells when miR-9 was overexpressed, demonstrating that miR-9 can promote neuronal differentiation by increasing autophagic activity.
    Neural Regeneration Research 02/2015; 10(2):314-20. DOI:10.4103/1673-5374.143439 · 0.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Any queries or remarks that have arisen during the processing of your manuscript are listed below and are highlighted by flags in the proof. (AU indicates author queries; ED indicates editor queries; and TS/TY indicates typesetter queries.) Please check your proof carefully and answer all AU queries. Mark all corrections and query answers at the appropriate place in the proof (e.g., by using on-screen annotations in the PDF file overview-of-the-publishing-process) or compile them in a separate list, and tick off below to indicate that you have answered the query. Please return your input as instructed by the project manager. Location in article Query / remark No Queries MicroRNA in Regenerative Medicine. http://dx. To protect the rights of the author(s) and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s)

Full-text (3 Sources)

Available from
May 22, 2014