Article

Immune response induced by Salmonella typhimurium defective in ppGpp synthesis.

Genome Research Center for Enteropathogenic Bacteria and Research Institute of Vibrio Infection, South Korea.
Vaccine (Impact Factor: 3.49). 04/2006; 24(12):2027-34. DOI: 10.1016/j.vaccine.2005.11.031
Source: PubMed

ABSTRACT Systemic infection by Salmonella typhimurium requires coordinated expression of virulence genes found primarily in Salmonella Pathogenecity Islands (SPIs). We have previously reported that the intracellular signal that induces these virulence genes is a stringent signal molecule, ppGpp [Song et al. J Biol Chem 2003;279:34183]. In this study, we found that relA and spoT double mutant Salmonella (DeltappGpp strain), which is defective in ppGpp synthesis, was virtually avirulent in BALB/c mice. Subsequently, the live vaccine potential of the avirulent DeltappGpp Salmonella strain was determined. A single immunization with live DeltappGpp Salmonella efficiently protected mice from challenge with wild-type Salmonella at a dose 10(6)-fold above the LD50 30 days after immunization. Various assays revealed that immunization of mice with the DeltappGpp strain elicited both systemic and mucosal antibody responses, in addition to cell-mediated immunity.

0 Followers
 · 
88 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: (p)ppGpp responds to nutrient limitation through a global change in gene regulation patterns to increase survival. The stringent response has been implicated in the virulence of several pathogenic bacterial species. Haemophilus ducreyi, the causative agent of chancroid, has homologs of both relA and spoT, which primarily synthesize and hydrolyze (p)ppGpp in Escherichia coli. We constructed relA and relA spoT deletion mutants to assess the contribution of (p)ppGpp to H. ducreyi pathogenesis. Both the relA mutant and the relA spoT double mutant failed to synthesize (p)ppGpp, suggesting that relA is the primary synthetase of (p)ppGpp in H. ducreyi. Compared to the parent strain, the double mutant was partially attenuated for pustule formation in human volunteers. The double mutant had several phenotypes that favored attenuation, including increased sensitivity to oxidative stress. The increased sensitivity to oxidative stress could be complemented in trans. However, the double mutant also exhibited phenotypes that favored virulence. When grown to mid-log phase, the double mutant was significantly more resistant than its parent to uptake by human macrophages and exhibited increased transcription of lspB, which is involved in resistance to phagocytosis. Additionally, compared to the parent, the double mutant also exhibited prolonged survival in stationary phase. In E. coli, overexpression of DksA compensates for the loss of (p)ppGpp; the H. ducreyi double mutant expressed higher transcript levels of dksA than the parent strain. These data suggest that the partial attenuation of the double mutant is likely the net result of multiple conflicting phenotypes.
    Infection and Immunity 06/2014; 82(8). DOI:10.1128/IAI.01994-14 · 4.16 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The bacterial stringent response is triggered by deficiencies of available nutrients and other environmental stresses. It is mediated by 5'-triphosphate-guanosine-3'-diphosphate and 5'-diphosphate-guanosine-3'-diphosphate (collectively (p)ppGpp) and generates global changes in gene expression and metabolism that enable bacteria to adapt to and survive these challenges. Borrelia burgdorferi encounters multiple stressors in its cycling between ticks and mammals that could trigger the stringent response. We have previously shown that the B. burgdorferi stringent response is mediated by a single enzyme, RelBbu, with both (p)ppGpp synthase and hydrolase activities, and that a B. burgdorferi 297 relBbu null deletion mutant was defective in adapting to stationary phase, incapable of down-regulating synthesis of rRNA and could not infect mice. We have now used this deletion mutant and microarray analysis to identify genes comprising the rel regulon in B. burgdorferi cultured at 34°C, and found that transcription of genes involved in glycerol metabolism is induced by relBbu. Culture of the wild type parental strain, the relBbu deletion mutant and its complemented derivative at 34°C and 25°C in media containing glucose or glycerol as principal carbon sources revealed a growth defect in the mutant, most evident at the lower temperature. Transcriptional analysis of the glp operon for glycerol uptake and metabolism in these three strains confirmed that relBbu was necessary and sufficient to increase transcription of this operon in the presence of glycerol at both temperatures. These results confirm and extend previous findings regarding the stringent response in B. burgdorferi. They also demonstrate that the stringent response regulates glycerol metabolism in this organism and is likely crucial for its optimal growth in ticks.
    PLoS ONE 02/2015; 10(2):e0118063. DOI:10.1371/journal.pone.0118063 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a facultative anaerobe, Vibrio cholerae can grow by anaerobic respiration. Production of cholera toxin (CT), a major virulence factor of V. cholerae, is highly promoted during anaerobic growth using trimethylamine N-oxide (TMAO) as an alternative electron acceptor. Here, we investigated the molecular mechanisms of TMAO-stimulated CT production and uncovered the crucial involvement of stringent response in this process. V. cholerae 7th pandemic strain N16961 produced a significantly elevated level of ppGpp, the bacterial stringent response alarmone, during anaerobic TMAO respiration. Bacterial viability was impaired and DNA replication was also affected under the same growth condition further suggesting that stringent response is induced. A ΔrelA ΔspoT ppGpp overproducer strain produced enhanced level of CT, while anaerobic growth via TMAO respiration was severely inhibited. In contrast, a ppGpp-null strain (ΔrelA ΔspoT ΔrelV) grew substantially better, but produced no CT, suggesting that CT production and bacterial growth are inversely regulated in response to ppGpp accumulation. Bacterial capability to produce CT was completely lost when the dksA gene, which encodes a protein that works cooperatively with ppGpp, was deleted. In the ΔdksA mutant, stringent response growth inhibition was alleviated, further supporting the inverse regulation of CT production and anaerobic growth. In vivo virulence of ΔrelA ΔspoT ΔrelV or ΔdksA mutants were significantly attenuated. The ΔrelA ΔspoT mutant maintained virulence when infected with exogenous TMAO, despite its defective growth. Together, our results reveal that stringent response is activated under TMAO-stimulated anaerobic growth and it regulates CT production in a growth-dependent manner in V. cholerae.
    Journal of Biological Chemistry 03/2014; 289(19). DOI:10.1074/jbc.M113.540088 · 4.60 Impact Factor