Article

Targeting amyloid-beta peptide (A beta) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in A beta precursor protein (APP) transgenic mice

Biology, William Penn University, Filadelfia, Pennsylvania, United States
Journal of Biological Chemistry (Impact Factor: 4.6). 03/2006; 281(7):4292-9. DOI: 10.1074/jbc.M511018200
Source: PubMed

ABSTRACT Passive immunization of murine models of Alzheimer disease amyloidosis reduces amyloid-beta peptide (Abeta) levels and improves cognitive function. To specifically address the role of Abeta oligomers in learning and memory, we generated a novel monoclonal antibody, NAB61, that preferentially recognizes a conformational epitope present in dimeric, small oligomeric, and higher order Abeta structures but not full-length amyloid-beta precursor protein or C-terminal amyloid-beta precursor protein fragments. NAB61 also recognized a subset of brain Abeta deposits, preferentially mature senile plaques, and amyloid angiopathy. Using NAB61 as immunotherapy, we showed that aged Tg2576 transgenic mice treated with NAB61 displayed significant improvements in spatial learning and memory relative to control mice. These data implicated Abeta oligomers as a pathologic substrate for cognitive decline in Alzheimer disease.

0 Followers
 · 
94 Views
  • Source
    Non-fibrillar Amyloidogenic Protein Assemblies—Common Cytotoxins Underlying Degenerative Diseases, Edited by Farid Rahimi, Gal Bitan, 01/2012: chapter Overview of fibrillar and oligomeric assemblies of amyloidogenic proteins: pages 1-36; Springer., ISBN: 9789400727731
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alzheimer's disease (AD) is the most prevalent form of dementia worldwide and is an emerging global epidemic. It is characterized by an imbalance between production and clearance of amyloid β (Aβ) and tau proteins. Oligomeric forms of Aβ and tau are believed to be the most toxic. Dramatic results from AD animal models showed great promise for active and passive immune therapies targeting Aβ. However, there is very limited evidence in human studies of the clinical benefits from these approaches. Immunotherapies targeting only tau pathology have had some success but are limited so far to mouse models. The majority of current methods is based on immunological targeting of a self-protein; hence, benefits need to be balanced against risks of stimulating excessive autoimmune toxic inflammation. For greater efficacy the next generation of vaccines needs to focus more on concurrently targeting all the intermediate toxic conformers of oligomeric Aβ and tau species. Copyright © 2015 Elsevier Inc. All rights reserved.
    Neuron 03/2015; 85(6):1162-1176. DOI:10.1016/j.neuron.2014.12.064 · 15.98 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson’s and Alzheimer’s. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer’s dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca2+ overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease, they offer appealing targets for therapeutics and diagnostics. Promising therapeutic strategies include use of CNS insulin signaling enhancers to protect against the presence of toxins and elimination of the toxins through use of highly specific AβO antibodies. An AD-dependent accumulation of AβOs in CSF suggests their potential use as biomarkers and new AβO probes are opening the door to brain imaging. Overall, current evidence indicates that Aβ oligomers provide a substantive molecular basis for the cause, treatment and diagnosis of Alzheimer’s disease.
    Acta Neuropathologica 02/2015; 129(2). DOI:10.1007/s00401-015-1386-3 · 9.78 Impact Factor