Local Growth Factors Are Beneficial for the Autonomic Reinnervation of Transplanted Islets in Rats

Departments of Medicine, Biomedical Center, Lund University, Lund, Sweden.
Pancreas (Impact Factor: 2.96). 06/2003; 26(4):392-7. DOI: 10.1097/00006676-200305000-00014
Source: PubMed


Transplanted islets, being avascular and denervated, receive blood vessels and nerves from the recipient. Reinnervation may account in part for the normalization of islet function in islet transplants. Whether reinnervation is possible to augment is not known.
To explore whether reinnervation of transplanted islets is augmented by local addition of growth factors to the graft, syngeneic islets were transplanted to the pancreas of streptozotocin-diabetic Lewis rats with or without pellets locally releasing nerve growth factor (NGF) and vascular endothelial growth factor (VEGF), alone or in combination. The pellets released growth factors for 14 days at a rate of 20 ng/day. After 7 weeks, pancreatic tissue was processed for immunofluorescence of insulin and the neural markers neuropeptide Y (NPY) and tyrosine hydroxylase (TH).
Islets were larger and more numerous after treatment with NGF (p = 0.024) and with NGF in combination with VEGF (p = 0.044). Similarly, immunostaining for TH and the C-terminal flanking peptide of NPY (C-PON) was more pronounced after treatment with NGF in combination with VEGF than in controls (both p < 0.05).
Local growth factor treatment has a beneficial effect on autonomic reinnervation as well as islet integrity and survival of the graft after islet transplantation in rats.

7 Reads
  • Source
    • "The following observations indicate that this could be the case, 1) NGF overexpression in pancreatic β cells causes islet sympathetic hyper-innervation [18]. 2) When islet grafts to diabetic rats are pre-treated with NGF, sympathetic innervation is increased after transplantation [19]. 3) Pancreatic sympathetic innervation is reduced in NGF/Bax double knockout (KO) mice [20]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Pancreatic islets are not fully developed at birth and it is not clear how they are vascularised and innervated. Nerve Growth Factor (NGF) is required to guide sympathetic neurons that innervate peripheral organs and also in cardiovascular system and ovary angiogenesis. Pancreatic beta cells of a transgenic mouse that over-expressed NGF in attracts sympathetic hyper-innervation towards them. Moreover, we have previously demonstrated that adult beta cells synthesize and secrete NGF; however, we do not know how is NGF secreted during development, nor if it might be trophic for sympathetic innervation and survival in the pancreas.We analyzed sympathetic innervation and vasculature development in rat pancreatic islets at different developmental stages; foetal (F19), early postnatal (P1), weaning period (P20) and adults. We temporarily correlated these events to NGF secretion by islet cells. Sympathetic fibres reached pancreatic islets in the early postnatal period, apparently following blood vessels. The maximal number of sympathetic fibres (TH immunopositive) in the periphery of the islets was observed at P20, and then fibres entered the islets and reached the core where beta cells are mainly located. The number of fibres decreased from that stage to adulthood. At all stages studied, islet cells secreted NGF and also expressed the high affinity receptor TrkA. Foetal and neonatal isolated islet cells secreted more NGF than adults. TrkA receptors were expressed at all stages in pancreatic sympathetic fibres and blood vessels. These last structures were NGF-immunoreactive only at early stages (foetal and P0). The results suggest that NGF signalling play an important role in the guidance of blood vessels and sympathetic fibres toward the islets during foetal and neonatal stages and could also preserve innervation at later stages of life.
    BMC Developmental Biology 07/2009; 9(1):34. DOI:10.1186/1471-213X-9-34 · 2.67 Impact Factor
  • Source
    • "In addition, Emanueli et al [30] have shown that NGF promotes angiogenesis and arteriogenesis via the vascular endothelial growth factor (VEGF) pathway following ischemic injury, with NGF proceeding VEGF action. A role for NGF in vascularisation, coupled to re-innervation, is further supported by Reimer et al [31] who showed enhanced blood vessel and nerve ingrowth to transplanted islet cells in rats treated with NGF or a combination of NGF and VEGF. We have concentrated principally on whether NGF acts as a guidance cue for regenerating antler sensory axons. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Deer antlers are the only mammalian organs that can fully regenerate each year. During their growth phase, antlers of red deer extend at a rate of approximately 10 mm/day, a growth rate matched by the antler nerves. It was demonstrated in a previous study that extracts from deer velvet antler can promote neurite outgrowth from neural explants, suggesting a possible role for Nerve Growth Factor (NGF) in antler innervation. Here we showed using the techniques of Northern blot analysis, denervation, immunohistochemistry and in situ hybridization that NGF mRNA was expressed in the regenerating antler, principally in the smooth muscle of the arteries and arterioles of the growing antler tip. Regenerating axons followed the route of the major blood vessels, located at the interface between the dermis and the reserve mesenchyme of the antler. Denervation experiments suggested a causal relationship exists between NGF mRNA expression in arterial smooth muscle and sensory axons in the antler tip. We hypothesize that NGF expressed in the smooth muscle of the arteries and arterioles promotes and maintains antler angiogenesis and this role positions NGF ahead of axons during antler growth. As a result, NGF can serve a second role, attracting sensory axons into the antler, and thus it can provide a guidance cue to define the nerve track. This would explain the phenomenon whereby re-innervation of the regenerating antler follows vascular ingrowth. The annual growth of deer antler presents a unique opportunity to better understand the factors involved in rapid nerve regeneration.
    PLoS ONE 02/2007; 2(1):e148. DOI:10.1371/journal.pone.0000148 · 3.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Expression of immune modulating mediators in human Islets of Langerhans could have important implications for development of autoimmunity in type 1 diabetes and influence the outcome of clinical islet transplantation. Islets obtained from five donors were analyzed at various times after isolation using cDNA array technology. The Atlas Human Cytokine/Receptor and Hematology/Immunology nylon membranes representing 268 genes and 406, respectively, were used and the relative expression of each gene analyzed. Of the 51 gene products identified, high mRNA expression of MCP-1, MIF, VEGF, and thymosin beta-10 was detected in all islet samples. IL-8, IL-1-beta, IL-5R, and INF-gamma antagonist were expressed in islets cultured for 2 days. IL-2R was expressed in islets cultured for more than 6 days. In conclusion, several inflammatory mediators were expressed in isolated islets, particularly at an early stage after isolation, indicating that a few days of culture could be beneficial for the outcome of islet transplantation.
    Biochemical and Biophysical Research Communications 09/2003; 308(3):474-9. DOI:10.1016/S0006-291X(03)01392-5 · 2.30 Impact Factor
Show more