Article

Alpha4beta1-dependent adhesion strengthening under mechanical strain is regulated by paxillin association with the alpha4-cytoplasmic domain.

Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
The Journal of Cell Biology (Impact Factor: 9.69). 01/2006; 171(6):1073-84. DOI: 10.1083/jcb.200503155
Source: PubMed

ABSTRACT The capacity of integrins to mediate adhesiveness is modulated by their cytoplasmic associations. In this study, we describe a novel mechanism by which alpha4-integrin adhesiveness is regulated by the cytoskeletal adaptor paxillin. A mutation of the alpha4 tail that disrupts paxillin binding, alpha4(Y991A), reduced talin association to the alpha4beta1 heterodimer, impaired integrin anchorage to the cytoskeleton, and suppressed alpha4beta1-dependent capture and adhesion strengthening of Jurkat T cells to VCAM-1 under shear stress. The mutant retained intrinsic avidity to soluble or bead-immobilized VCAM-1, supported normal cell spreading at short-lived contacts, had normal alpha4-microvillar distribution, and responded to inside-out signals. This is the first demonstration that cytoskeletal anchorage of an integrin enhances the mechanical stability of its adhesive bonds under strain and, thereby, promotes its ability to mediate leukocyte adhesion under physiological shear stress conditions.

0 Followers
 · 
154 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leukocytes arrested on inflamed endothelium via integrins are subjected to force imparted by flowing blood. How leukocytes respond to this force and resist detachment is poorly understood. Live-cell imaging with Lifeact-transfected U937 cells revealed that force triggers actin polymerization at upstream α4β1 integrin adhesion sites and the adjacent cortical cytoskeleton. Scanning electron microscopy revealed that this culminates in the formation of structures that anchor monocyte adhesion. Inhibition of actin polymerization resulted in cell deformation, displacement, and detachment. Transfection of dominant-negative constructs and inhibition of function or expression revealed key signaling steps required for upstream actin polymerization and adhesion stabilization. These included activation of Rap1, phosphoinositide 3-kinase γ isoform, and Rac but not Cdc42. Thus, rapid signaling and structural adaptations enable leukocytes to stabilize adhesion and resist detachment forces.
    The Journal of Cell Biology 04/2012; 197(1):115-29. DOI:10.1083/jcb.201107140 · 9.69 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Flightless I (Flii) is an actin-remodeling protein that influences diverse processes including cell migration and gene transcription and links signal transduction with cytoskeletal regulation. Here, we show that Flii modulation of focal adhesions and filamentous actin stress fibers is Rac1-dependent. Using primary skin fibroblasts from Flii overexpressing (Flii(Tg/Tg)), wild-type, and Flii deficient (Flii(+/-)) mice, we show that elevated expression of Flii increases stress fiber formation by impaired focal adhesion turnover and enhanced formation of fibrillar adhesions. Conversely, Flii knockdown increases the percentage of focal complex positive cells. We further show that a functional effect of Flii at both the cellular level and in in vivo mouse wounds is through inhibiting paxillin tyrosine phosphorylation and suppression of signaling proteins Src and p130Cas, both of which regulate adhesion signaling pathways. Flii is upregulated in response to wounding, and overexpression of Flii inhibits paxillin activity and reduces adhesion signaling by modulating the activity of the Rho family GTPases. Overexpression of constitutively active Rac1 GTPase restores the spreading ability of Flii(Tg/Tg) fibroblasts and may explain the reduced adhesion, migration, and proliferation observed in Flii(Tg/Tg) mice and their impaired wound healing, a process dependent on effective cellular motility and adhesion.
    Journal of Investigative Dermatology 03/2011; 131(7):1450-9. DOI:10.1038/jid.2011.69 · 6.37 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Alpha4 integrins are used by leukocytes and neural crest derivatives for adhesion and migration during embryogenesis, immune responses and tumour invasion. The pro-migratory activity of alpha4 integrin is mediated in part through the direct binding of the cytoplasmic domain to paxillin. Here, using intermolecular FRET and biochemical analyses, we report a novel interaction of the alpha4 integrin cytoplasmic domain with 14-3-3zeta. This interaction depends on serine phosphorylation of alpha4 integrin at a site (S978) distinct from that which regulates paxillin binding (S988). Using a combination of metabolic labelling and targeted mass spectrometry by multiple reaction monitoring we demonstrate the low stoichiometry phosphorylation of S978. The interaction between alpha4 integrin and 14-3-3zeta is enhanced by the direct association between 14-3-3zeta and paxillin, resulting in the formation of a ternary complex that stabilises the recruitment of each component. Although pair-wise interaction between alpha4 integrin and paxillin is sufficient for normal Rac1 regulation, the integrity of the ternary complex is essential for focused Cdc42 activity at the lamellipodial leading edge and directed cell movement. Taken together, these data identify a key signalling nexus mediating alpha4 integrin-dependent migration.
    Journal of Cell Science 05/2009; 122(Pt 10):1654-64. DOI:10.1242/jcs.049130 · 5.33 Impact Factor

Preview (3 Sources)

Download
0 Downloads
Available from