Article

Alpha4beta1-dependent adhesion strengthening under mechanical strain is regulated by paxillin association with the alpha4-cytoplasmic domain.

Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel.
The Journal of Cell Biology (Impact Factor: 9.69). 01/2006; 171(6):1073-84. DOI: 10.1083/jcb.200503155
Source: PubMed

ABSTRACT The capacity of integrins to mediate adhesiveness is modulated by their cytoplasmic associations. In this study, we describe a novel mechanism by which alpha4-integrin adhesiveness is regulated by the cytoskeletal adaptor paxillin. A mutation of the alpha4 tail that disrupts paxillin binding, alpha4(Y991A), reduced talin association to the alpha4beta1 heterodimer, impaired integrin anchorage to the cytoskeleton, and suppressed alpha4beta1-dependent capture and adhesion strengthening of Jurkat T cells to VCAM-1 under shear stress. The mutant retained intrinsic avidity to soluble or bead-immobilized VCAM-1, supported normal cell spreading at short-lived contacts, had normal alpha4-microvillar distribution, and responded to inside-out signals. This is the first demonstration that cytoskeletal anchorage of an integrin enhances the mechanical stability of its adhesive bonds under strain and, thereby, promotes its ability to mediate leukocyte adhesion under physiological shear stress conditions.

0 Bookmarks
 · 
140 Views
  • Current Topics in Membranes - CURR TOP MEMBR. 01/2009; 64:157-193.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ABSTRACT Toxoplasma gondii is a highly successful parasite that infects approximately one-third of the human population and can cause fatal disease in immunocompromised individuals. Systemic parasite dissemination to organs such as the brain and eye is critical to pathogenesis. T. gondii can disseminate via the circulation, and both intracellular and extracellular modes of transport have been proposed. However, the processes by which extracellular tachyzoites adhere to and migrate across vascular endothelium under the conditions of rapidly flowing blood remain unknown. We used microfluidics and time-lapse fluorescence microscopy to examine the interactions between extracellular T. gondii and primary human endothelial cells under conditions of physiologic shear stress. Remarkably, tachyzoites adhered to and glided on human vascular endothelium under shear stress conditions. Compared to static conditions, shear stress enhanced T. gondii helical gliding, resulting in a significantly greater displacement, and increased the percentage of tachyzoites that invaded or migrated across the endothelium. The intensity of the shear forces (from 0.5 to 10 dynes/cm(2)) influenced both initial and sustained adhesion to endothelium. By examining tachyzoites deficient in the T. gondii adhesion protein MIC2, we found that MIC2 contributed to initial adhesion but was not required for adhesion strengthening. These data suggest that under fluidic conditions, T. gondii adhesion to endothelium may be mediated by a multistep cascade of interactions that is governed by unique combinations of adhesion molecules. This work provides novel information about tachyzoite interactions with vascular endothelium and contributes to our understanding of T. gondii dissemination in the infected host. IMPORTANCE Toxoplasma gondii is a global parasite pathogen that can cause fatal disease in immunocompromised individuals. An unresolved question is how the parasites circulate in the body to tissues to cause disease. T. gondii parasites are found in the bloodstream of infected animals and patients, and they have been shown to adhere to and cross the endothelial cells that line blood vessel walls. To investigate these interactions, we devised a microfluidic system to visualize parasites interacting with vascular endothelium under conditions similar to those found in the bloodstream. Interestingly, parasite migration was significantly influenced by the mechanical force of shear flow. Furthermore, we identified a role for the parasite surface protein MIC2 in the initial phase of adhesion. Our study is the first to document T. gondii interactions with endothelium under shear stress conditions and provides a foundation for future studies on the molecules that mediate parasite interaction with the vasculature.
    mBio 02/2014; 5(2). · 6.88 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cells secrete and assemble extracellular matrix throughout development, giving rise to time-dependent, tissue-specific stiffness. Mimicking myocardial matrix stiffening, i.e. ~10-fold increase over 1 week, with a hydrogel system enhances myofibrillar organization of embryonic cardiomyocytes compared to static hydrogels, and thus we sought to identify specific mechanosensitive proteins involved. Expression and/or phosphorylation state of 309 unique protein kinases were examined in embryonic cardiomyocytes plated on either dynamically stiffening or static mature myocardial stiffness hydrogels. Gene ontology analysis of these kinases identified cardiogenic pathways that exhibited time-dependent up-regulation on dynamic versus static matrices, including PI3K/AKT and p38 MAPK, while GSK3β, a known antagonist of cardiomyocyte maturation, was down-regulated. Additionally, inhibiting GSK3β on static matrices improved spontaneous contraction and myofibril organization, while inhibiting agonist AKT on dynamic matrices reduced myofibril organization and spontaneous contraction, confirming its role in mechanically-driven maturation. Together, these data indicate that mechanically-driven maturation is at least partially achieved via active mechanosensing at focal adhesions, affecting expression and phosphorylation of a variety of protein kinases important to cardiomyogenesis.
    Scientific Reports 09/2014; 4:6425. · 5.08 Impact Factor

Preview (2 Sources)

Download
0 Downloads
Available from