Heart transplantation for progressive cardiomyopathy as a manifestation of MELAS syndrome

Department of Surgery, University of North Carolina at Chapel Hill, North Carolina, United States
The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation (Impact Factor: 5.61). 01/2006; 24(12):2286-9. DOI: 10.1016/j.healun.2005.05.012
Source: PubMed

ABSTRACT Mitochondrial diseases represent a heterogeneous group of disorders associated with a wide array of clinical manifestations. The presentation of patients with mitochondrial pathology largely depends upon the dysfunction of organ systems with large metabolic/energy requirements, including cardiac, neurologic, and musculoskeletal. In particular, mitochondrial myocardial disease can be progressive resulting in congestive heart failure and end-stage heart disease. This article reviews the role of heart transplantation for a particular variant of mitochondrial disorder, mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome, and discusses perioperative management issues related to transplantation for mitochondrial cardiomyopathies.

  • Source
    • "rate has been reported in six patients with mitochondrial cardiomyopathy (Bonnet et al. 2001). More recently, a successful recipient outcome for two patients with MELAS was reported (Bhati et al. 2005). Liver function is often impaired, especially in mtDNA depletion syndromes. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mitochondrial disorders can no longer be ignored in most medical disciplines. Such disorders include specific and widespread organ involvement, with tissue degeneration or tumor formation. Primary or secondary actors, mitochondrial dysfunctions also play a role in the aging process. Despite progresses made in identification of their molecular bases, nearly everything remains to be done as regards therapy. Research dealing with mitochondrial physiology and pathology has >20 years of history around the world. We are involved, as are many other laboratories, in the challenge of finding ways to fight these diseases. However, our main limitation is the scarcety of animal models required for both understanding the molecular mechanisms underlying the diseases and evaluating therapeutic strategies. This is especially true for diseases due to mutations in mitochondrial DNA (mtDNA), since an authentic genetic model of mtDNA mutations is technically a very difficult task due to both the inability of manipulating the mitochondrial genome of living mammalian cells and to its multicopy nature. This has led researchers in the field to consider the prospect of gene therapy approaches that can roughly be divided into three groups: (1) import of wild-type copies or relevant sections of DNA or RNA into mitochondria, (2) manipulation of mitochondrial genetic content, and (3) rescue of a defect by expression of an engineered gene product from the nucleus (allotopic or xenotropic expression). We briefly introduce these concepts and indicate where promising progress has been made in the last decade.
    Journal of Inherited Metabolic Disease 04/2011; 34(2):327-44. DOI:10.1007/s10545-010-9131-5 · 4.14 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence emphasizes the role of genetic factors in the development of cardiomyopathy. Mitochondrial cardiomyopathy is defined as cardiomyopathy caused by mitochondrial DNA mutations. The rate of mitochondrial DNA mutation is estimated to be much higher than that of nuclear DNA. It has been demonstrated that mutations of mitochondrial DNA are found in a variety of diseases, suggesting a new concept of mitochondrial disease. This contribution reviews the concept, molecular genetics, family history, pathology, clinical symptoms, diagnosis and therapy of mitochondrial cardiomyopathy.
    Herz 05/1994; 19(2):105-18, 125. DOI:10.1007/978-1-84996-471-5_7 · 0.91 Impact Factor
  • Source
    The Primary Care Companion to The Journal of Clinical Psychiatry 02/2008; 10(3):237-44. DOI:10.4088/PCC.v10n0309
Show more