Propensity for paternal inheritance of de novo mutations in Alexander disease

Department of Neurobiology and Civitan International Research Center 529, University of Alabama at Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294-0021, USA.
Human Genetics (Impact Factor: 4.82). 04/2006; 119(1-2):137-44. DOI: 10.1007/s00439-005-0116-7
Source: PubMed


De novo dominant mutations in the GFAP gene have recently been associated with nearly all cases of Alexander disease, a rare but devastating neurological disorder. These heterozygous mutations must occur very early in development and be present in nearly all cells in order to be detected by the sequencing methods used. To investigate whether the mutations may have arisen in the parental germ lines, we determined the parental chromosome bearing the mutations for 28 independent Alexander disease cases. These cases included 17 different missense mutations and one insertion mutation. To enable assignment of the chromosomal origin of the mutations, six new single nucleotide polymorphisms in the GFAP gene were identified, bringing the known total to 26. In 24 of the 28 cases analyzed, the paternal chromosome carried the GFAP mutation (P < 0.001), suggesting that they predominantly arose in the parental germ line, with most occurring during spermatogenesis. No effect of paternal age was observed. There has been considerable debate about the magnitude of the male to female germ line mutation rate; our ratio of 6:1 is consistent with indirect estimates based on the rate of evolution of the sex chromosome relative to the autosomic chromosomes.

1 Follower
16 Reads
  • Source
    • "AD is a sporadic or autosomal dominant condition associated in most of the cases with heterozygous mutations in the gene encoding the glial fibrillary acidic protein, GFAP, an intermediate filament component of the cytoskeleton of several cell types [2]. GFAP mutations frequently occur de novo, particularly in infantile cases, while in Adult-onset AD (AOAD) both de novo mutations and autosomal dominant transmission have been described [3]. GFAP-containing eosinophil aggregates, known as Rosenthal fibers, distributed in the white matter of the CNS, constitute the morphological hallmark of the disease [2]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background We studied a family including two half-siblings, sharing the same mother, affected by slowly progressive, adult-onset neurological syndromes. In spite of the diversity of the clinical features, characterized by a mild movement disorder with cognitive impairment in the elder patient, and severe motor-neuron disease (MND) in her half-brother, the brain Magnetic Resonance Imaging (MRI) features were compatible with adult-onset Alexander’s disease (AOAD), suggesting different expression of the same, genetically determined, condition. Methods Since mutations in the alpha isoform of glial fibrillary acidic protein, GFAP-α, the only cause so far known of AOAD, were excluded, we applied exome Next Generation Sequencing (NGS) to identify gene variants, which were then functionally validated by molecular characterization of recombinant and patient-derived cells. Results Exome-NGS revealed a mutation in a previously neglected GFAP isoform, GFAP-ϵ, which disrupts the GFAP-associated filamentous cytoskeletal meshwork of astrocytoma cells. To shed light on the different clinical features in the two patients, we sought for variants in other genes. The male patient had a mutation, absent in his half-sister, in X-linked histone deacetylase 6, a candidate MND susceptibility gene. Conclusions Exome-NGS is an unbiased approach that not only helps identify new disease genes, but may also contribute to elucidate phenotypic expression.
    Orphanet Journal of Rare Diseases 05/2013; 8(1):66. DOI:10.1186/1750-1172-8-66 · 3.36 Impact Factor
  • Source
    • "However, only a few cases have been pathologically proven [11,16,17,21,28]; the rest were diagnosed as having ALX only by molecular testing. Since missense mutations may only be polymorphisms [37], their pathogenicity must be accepted with caution. Indeed, the E223Q mutation, identified in a patient with neurological deficits and radiological findings atypical for adult-onset ALX [38], is now classified as a polymorphism [21]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alexander disease (ALX) is a rare neurological disorder characterized by white matter degeneration and cytoplasmic inclusions in astrocytes called Rosenthal fibers, labeled by antibodies against glial fibrillary acidic protein (GFAP). Three subtypes are distinguished according to age at onset: infantile (under age 2), juvenile (age 2 to 12) and adult (over age 12). Following the identification of heterozygous mutations in GFAP that cause this disease, cases of adult-onset ALX have been increasingly reported. We present a 60-year-old Japanese man with an unremarkable past and no family history of ALX. After head trauma in a traffic accident at the age of 46, his character changed, and dementia and dysarthria developed, but he remained independent. Spastic paresis and dysphagia were observed at age 57 and 59, respectively, and worsened progressively. Neurological examination at the age of 60 revealed dementia, pseudobulbar palsy, left-side predominant spastic tetraparesis, axial rigidity, bradykinesia and gaze-evoked nystagmus. Brain MRI showed tadpole-like atrophy of the brainstem, caused by marked atrophy of the medulla oblongata, cervical spinal cord and midbrain tegmentum, with an intact pontine base. Analysis of the GFAP gene revealed a heterozygous missense mutation, c.827G>T, p.R276L, which was already shown to be pathogenic in a case of pathologically proven hereditary adult-onset ALX. The typical tadpole-like appearance of the brainstem is strongly suggestive of adult-onset ALX, and should lead to a genetic investigation of the GFAP gene. The unusual feature of this patient is the symmetrical involvement of the basal ganglia, which is rarely observed in the adult form of the disease. More patients must be examined to confirm, clinically and neuroradiologically, extrapyramidal involvement of the basal ganglia in adult-onset ALX.
    BMC Neurology 04/2010; 10(1):21. DOI:10.1186/1471-2377-10-21 · 2.04 Impact Factor
  • Source
    • "The mother did not carry any mutation; therefore, each variant could have been either transmitted from the father or occurred de novo. Patients 1, 5 and 8, already known to carry diseasecausing mutations, also showed the p.P47P variant, which, like p.D157N, had already been detected in unaffected parents (Li et al., 2005), in control subjects (Li et al., 2006), but also in our 100 control chromosomes set with a frequency of 8%. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Alexander disease (AD) in its typical form is an infantile lethal leucodystrophy, characterized pathologically by Rosenthal fibre accumulation. Following the identification of glial fibrillary acidic protein (GFAP) gene as the causative gene, cases of adult-onset AD (AOAD) are being described with increasing frequency. AOAD has a different clinical and neuroradiological presentation with respect to early-onset AD, as abnormalities are mainly concentrated in the brainstem-spinal cord junction. We report detailed clinical and genetic data of 11 cases of AOAD, observed over a 4-year period, and a review of the previously reported 25 cases of genetically confirmed AOAD. In our series, onset occurred as late as age 62, and up to 71 in an affected deceased relative. Most cases appeared sporadic, but family history may be misleading. The most frequent symptoms were related to bulbar dysfunction-with dysarthria, dysphagia, dysphonia (seven patients)-, pyramidal involvement (seven patients) and cerebellar ataxia (seven patients). Four patients had palatal myoclonus. Sleep disorders were also observed (four cases). Bulbar symptoms, however, were infrequent at onset and two symptomatic patients had an almost pure pyramidal involvement. Two subjects were asymptomatic. Misdiagnosis at presentation was frequent and MRI was instrumental in suggesting the correct diagnosis by showing, in all cases, mild to severe atrophy of the medulla oblongata extending caudally to the cervical spinal cord. In ten patients, molecular studies revealed six novel missense mutations and three previously reported changes in GFAP. The last typical patient carried no definitely pathogenic mutation, but a missense variant (p.D157N), supposedly a rare polymorphism. Revision of the literature and the present series indicate that the clinical picture is not specific, but AOAD must be considered in patients of any age with lower brainstem signs. When present, palatal myoclonus is strongly suggestive. Pyramidal involvement, cerebellar ataxia and urinary disturbances are common. Less frequent findings include sleep disorders and dysautonomia. Fluctuations may occur. The course is variable, usually slowly progressive and less severe than the AD forms with earlier onset. AOAD is more common than previously thought and might even be the most common form of AD. The diagnosis is strongly suggested by MRI and confirmed by GFAP gene analysis.
    Brain 10/2008; 131(Pt 9):2321-31. DOI:10.1093/brain/awn178 · 9.20 Impact Factor
Show more