Gaboxadol--a new awakening in sleep.

Merck, Sharp & Dohme, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, UK.
Current Opinion in Pharmacology (Impact Factor: 4.23). 03/2006; 6(1):30-6. DOI: 10.1016/j.coph.2005.10.004
Source: PubMed

ABSTRACT Drugs that enhance synaptic gamma-aminobutyric acid (GABA)ergic neurotransmission are widely utilized in the clinical setting. Barbiturates and benzodiazepine receptor agonists, for example, both potentiate an inhibitory chloride conductance through GABA-gated channels, and thereby achieve their sedative-hypnotic effects. The primary locus of action of these agents, and indeed most neuroactive drugs, is the postsynaptic junction. By contrast, gaboxadol, a selective extrasynaptic GABA receptor agonist and late-stage investigational treatment for insomnia, acts on a unique delta-containing GABAA receptor subtype found exclusively outside of the synapse. Although the mechanistic details of extrasynaptic neurotransmission remain to be fully established, it is now clear that these receptors demonstrate unique pharmacological, biophysical and electrophysiological properties. Importantly, the delta-containing GABAA receptor subtype activated by gaboxadol is highly expressed in the thalamus, where it might behave as a 'gain control' (independently controlling the strength of signals) in the corticothalamic pathways that govern sleep-relevant neuronal oscillations. This unique mechanism has contributed to our increased understanding of sleep mechanisms, and targeting of this system offers potential advantages over existing insomnia treatments.

  • Source
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in the brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), the absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems. Copyright © 2014 Elsevier B.V. All rights reserved.
    Schizophrenia Research 11/2014; DOI:10.1016/j.schres.2014.10.010 · 4.43 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to modulate the synaptic GABA levels has been demonstrated by using the clinically effective and selective GAT1 inhibitor tiagabine [(R)-N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]nipecotic acid]. N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-(methylamino)-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (EF1502) which not only inhibits GAT1 like tiagabine but also BGT1 has been shown to modulate extrasynaptic GABA levels. The simultaneous inhibition of synaptic and extrasynaptic GABA transporters using tiagabine and EF1502, respectively has been demonstrated to exert a synergistic anticonvulsant effect in several seizure models in mice. The pharmacological profile of these and similar compounds has been thoroughly investigated in in vitro systems, comparing the GAT subtype selectivity with the ability to inhibit GABA uptake in primary cultures of neurons and astrocytes. However, an exact explanation has not yet been found. In the present study, the ability of GATs to form homo and/or heterodimers was investigated as well as to which membrane micro environment the GATs reside. To investigate dimerization of GATs, fusion proteins of GATs tagged with either yellow fluorescent protein or cerulean fluorescent protein were made and fluorescence resonance energy transfer (FRET) was measured. It was found that GATs form both homo- and hetero-dimers in N2A and HEK-293 cells. Microdomain localization of GATs as investigated by detergent resistant membrane fractions after treatment of tissue with Brij-98 or Triton X-100 revealed that BGT1 and GAT1 mostly localize to non-membrane rafts independent of the detergent used. However, GAT3 localizes to membrane rafts when using Brij-98. Taken together, these results suggest that the observed hetero dimerization of GATs in the FRET study is unlikely to have functional implications since the GATs are located to very different cellular compartments and cell types.
    Neurochemical Research 12/2014; DOI:10.1007/s11064-014-1494-9 · 2.55 Impact Factor