Photochemical tools for remote control of ion channels in excitable cells.

Department of Molecular and Cell Biology, 142 Life Sciences Addition, University of California, Berkeley, Berkeley, California 94720, USA.
Nature Chemical Biology (Impact Factor: 13.22). 01/2006; 1(7):360-5. DOI: 10.1038/nchembio750
Source: PubMed

ABSTRACT Various strategies have been developed recently for imparting light sensitivity onto normally insensitive cells. These include expression of natural photosensitive proteins, photolysis of caged agonists of native cell surface receptors and photoswitching of isomerizable tethered ligands that act on specially engineered ion channels and receptor targets. The development of chemical tools for optically stimulating or inhibiting signaling proteins has particular relevance for the nervous system, where precise, noninvasive control is an experimental and medical necessity.

  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to reversibly control protein structure and function with light would offer high spatiotemporal resolution for investigating biological processes. To confer photoresponsiveness on general proteins, we genetically incorporated a set of photoswitchable click amino acids (PSCaas), which contain both a reversible photoswitch and an additional click functional group for further modifications. Orthogonal tRNA-synthetases were evolved to genetically encode PSCaas bearing azobenzene with an alkene, keto, or benzyl chloride group in E. coli and in mammalian cells. After incorporation into calmodulin, the benzyl chloride PSCaa spontaneously generated a covalent protein bridge by reacting with a nearby cysteine residue through proximity-enabled bioreactivity. The resultant azobenzene bridge isomerized in response to light, thereby changing the conformation of calmodulin. These genetically encodable PSCaas will prove valuable for engineering photoswitchable bridges into proteins for reversible optogenetic regulation.
    Angewandte Chemie 03/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spatial and temporal control over chemical and biological processes plays a key role in life and material sciences. Here we synthesized a two-photon-activatable glutathione (GSH) to trigger the interaction with glutathione S-transferase (GST) by light at superior spatiotemporal resolution. The compound shows fast and well-confined photoconversion into the bioactive GSH, which is free to interact with GST-tagged proteins. The GSH/GST interaction can be phototriggered, changing its affinity over several orders of magnitude into the nanomolar range. Multiplexed three-dimensional (3D) protein networks are simultaneously generated in situ through two-photon fs-pulsed laser-scanning excitation. The two-photon activation facilitates the three-dimensional assembly of protein structures in real time at hitherto unseen resolution in time and space, thus opening up new applications far beyond the presented examples.
    Angewandte Chemie International Edition 04/2014; 53(22). · 11.34 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The high-resolution imaging of neural cells in vivo has brought about great progress in neuroscience research. Here, we report a novel experimental platform, where the intact brain of a living mouse can be studied with the aid of a surgically implanted micro-optical fluidic device; acting as an interface between neurons and the outer world. The newly developed device provides the functions required for the long-term and high-resolution observation of the fine structures of neurons by two-photon laser scanning microscopy and the microfluidic delivery of chemicals or drugs directly into the brain. A proof-of-concept experiment of single-synapse stimulation by two-photon uncaging of caged glutamate and observation of dendritic spine shrinkage over subsequent days demonstrated a promising use for the present technology.
    Scientific Reports 10/2014; 4:6721. · 5.08 Impact Factor