Article

Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain.

Laboratory of Personality and Cognition, National Institute on Aging, Baltimore, Maryland 21224-6825, USA.
The Journal of Neuroscience : The Official Journal of the Society for Neuroscience (Impact Factor: 6.75). 05/2003; 23(8):3295-301.
Source: PubMed

ABSTRACT Age-related loss of brain tissue has been inferred from cross-sectional neuroimaging studies, but direct measurements of gray and white matter changes from longitudinal studies are lacking. We quantified longitudinal magnetic resonance imaging (MRI) scans of 92 nondemented older adults (age 59-85 years at baseline) in the Baltimore Longitudinal Study of Aging to determine the rates and regional distribution of gray and white matter tissue loss in older adults. Using images from baseline, 2 year, and 4 year follow-up, we found significant age changes in gray (p < 0.001) and white (p < 0.001) volumes even in a subgroup of 24 very healthy elderly. Annual rates of tissue loss were 5.4 +/- 0.3, 2.4 +/- 0.4, and 3.1 +/- 0.4 cm3 per year for total brain, gray, and white volumes, respectively, and ventricles increased by 1.4 +/- 0.1 cm3 per year (3.7, 1.3, 2.4, and 1.2 cm3, respectively, in very healthy). Frontal and parietal, compared with temporal and occipital, lobar regions showed greater decline. Gray matter loss was most pronounced for orbital and inferior frontal, cingulate, insular, inferior parietal, and to a lesser extent mesial temporal regions, whereas white matter changes were widespread. In this first study of gray and white matter volume changes, we demonstrate significant longitudinal tissue loss for both gray and white matter even in very healthy older adults. These data provide essential information on the rate and regional pattern of age-associated changes against which pathology can be evaluated and suggest slower rates of brain atrophy in individuals who remain medically and cognitively healthy.

0 Followers
 · 
117 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During aging, changes in the structure of the cerebral cortex of the rat have been seen, but potential changes in neuron number remain largely unexplored. In the present study, stereological methods were used to examine neuron number in the medial prefrontal cortex and primary visual cortex of young adult (85-90 days of age) and aged (19-22 months old) male and female rats in order to investigate any age-related losses. Possible sex differences in aging were also examined since sexually dimorphic patterns of aging have been seen in other measures. An age-related loss of neurons (18-20%), which was mirrored in volume losses, was found to occur in the primary visual cortex in both sexes in all layers except IV. Males, but not females, also lost neurons (15%) from layer V/VI of the ventral medial prefrontal cortex and showed an overall decrease in volume of this region. In contrast, dorsal medial prefrontal cortex showed no age-related changes. The effects of aging clearly differ among regions of the rat brain and to some degree, between the sexes.
    Brain Research 08/2008; 1218:1-12. DOI:10.1016/j.brainres.2008.04.055 · 2.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We sought to determine whether there are structural and metabolic changes in the brains of older adults with cognitive complaints yet who do not meet MCI criteria (i.e., preMCI). We compared the volumes of regional lobar gray matter (GM) and medial temporal lobe structures, including the hippocampus, entorhinal cortex (ERC), fusiform and parahippocampal gyri, and metabolite ratios from the posterior cingulate in individuals who had a Clinical Demetia Rating (CDR) of 0.5, but who did not meet MCI criteria (preMCI, N=17), patients with mild cognitive impairment (MCI, N=13), and cognitively normal controls (N=18). Controls had more ERC, fusiform, and frontal gray matter volume than preMCI and MCI subjects and greater parahippocampal volume and more posterior cingulate N-acetylaspartate (NAA)/myoinosotil (mI) than MCI. There were no significant differences between MCI and preMCI subjects on any of these measures. These findings suggest there are neurodegenerative changes in the brains of older adults who have cognitive complaints severe enough to qualify for CDR=0.5 yet show no deficits on formal neuropsychological testing. The results further support the hypothesis that detection of individuals with very mild forms of Alzheimer's disease (AD) may be facilitated by use of the CDR, which emphasizes changes in cognition over time within individuals rather than comparison with group norms.
    Neurobiology of aging 07/2008; 31(3):368-77. DOI:10.1016/j.neurobiolaging.2008.05.004 · 4.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Previous research has established that age-related decline occurs in measures of cerebral white matter integrity, but the role of this decline in age-related cognitive changes is not clear. To conclude that white matter integrity has a mediating (causal) contribution, it is necessary to demonstrate that statistical control of the white matter-cognition relation reduces the magnitude of age-cognition relation. In this research, we tested the mediating role of white matter integrity, in the context of a task-switching paradigm involving word categorization. Participants were 20 healthy, community-dwelling older adults (60-85 years), and 20 younger adults (18-27 years). From diffusion tensor imaging tractography, we obtained fractional anisotropy (FA) as an index of white matter integrity in the genu and splenium of the corpus callosum and the superior longitudinal fasciculus (SLF). Mean FA values exhibited age-related decline consistent with a decrease in white matter integrity. From a model of reaction time distributions, we obtained independent estimates of the decisional and nondecisional (perceptual-motor) components of task performance. Age-related decline was evident in both components. Critically, age differences in task performance were mediated by FA in two regions: the central portion of the genu, and splenium-parietal fibers in the right hemisphere. This relation held only for the decisional component and was not evident in the nondecisional component. This result is the first demonstration that the integrity of specific white matter tracts is a mediator of age-related changes in cognitive performance.
    Journal of Cognitive Neuroscience 07/2008; 21(2):289-302. DOI:10.1162/jocn.2009.21047 · 4.69 Impact Factor