Resolution of inflammation: the beginning programs the end.

Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA.
Nature Immunology (Impact Factor: 24.97). 01/2006; 6(12):1191-7. DOI: 10.1038/ni1276
Source: PubMed

ABSTRACT Acute inflammation normally resolves by mechanisms that have remained somewhat elusive. Emerging evidence now suggests that an active, coordinated program of resolution initiates in the first few hours after an inflammatory response begins. After entering tissues, granulocytes promote the switch of arachidonic acid-derived prostaglandins and leukotrienes to lipoxins, which initiate the termination sequence. Neutrophil recruitment thus ceases and programmed death by apoptosis is engaged. These events coincide with the biosynthesis, from omega-3 polyunsaturated fatty acids, of resolvins and protectins, which critically shorten the period of neutrophil infiltration by initiating apoptosis. Consequently, apoptotic neutrophils undergo phagocytosis by macrophages, leading to neutrophil clearance and release of anti-inflammatory and reparative cytokines such as transforming growth factor-beta1. The anti-inflammatory program ends with the departure of macrophages through the lymphatics. Understanding these and further details of the mechanism required for inflammation resolution may underpin the development of drugs that can resolve inflammatory processes in directed and controlled ways.

  • Source
    Journal of Molecular and Cellular Cardiology 04/2015; DOI:10.1016/j.yjmcc.2015.04.003 · 5.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inflammatory responses following tissue injury are essential for proper tissue regeneration. However, dysfunctional or repetitive inflammatory tissue assaults can lead to poor tissue regeneration and ultimate tissue failure via fibrosis. Previous attempts at urinary bladder tissue regeneration utilizing polymeric and biologic scaffolding materials tended to elicit these responses leading to poor tissue regeneration. Recent advances in bladder regeneration utilizing bone marrow derived mesenchymal stem cells (MSCs) and CD34(+) hematopoietic stem/progenitor cells (HSPCs) with biocompatible citric acid based scaffolds have provided an environment that not only promotes the growth of architecturally germane and physiologically functional tissue, but also modulates aspects of the innate immune response. Within this study MSCs, CD34(+) HSPCs, or MSC/CD34(+) HSPC seeded POC [poly (1,8-octanediol-co-citrate)] scaffolds were utilized in an established rodent bladder augmentation model to evaluate inflammation as it pertains to bladder tissue regeneration. Quantified data from post-augmentation regenerated tissue samples at the 4 week time-point demonstrated that POC/MSC and POC/MSC + CD34(+) HSPC grafts markedly reduced the presence of pro-inflammatory CD68(+) macrophages and MPO(+) neutrophils compared to unseeded POC or POC/CD34(+) HSPC-only seeded grafts. Pro-inflammatory cytokines TNFα and IL-1b were also significantly down-regulated with a concomitant increase in the anti-inflammatory cytokines IL-10 and IL-13 in the aforementioned POC/MSC and POC/MSC + CD34(+) HSPC composites. Furthermore, this led to fewer instances of bladder tissue granuloma formation combined with greater muscle content and tissue angiogenic events as previous data has demonstrated. Data indicates that POC/MSC and POC/MSC + CD34(+) HSPC grafts attenuate the innate inflammatory response and promote bladder tissue regeneration.
    01/2015; 68(1):115-20. DOI:10.5173/ceju.2015.01.526
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The concept that chemokines, cytokines and pro-inflammatory mediators act in a co-ordinated fashion to drive the initiation of the inflammatory reaction is well understood. The significance of such networks acting during the resolution of inflammation however is poorly appreciated. In recent years, specific pro-resolving mediators were discovered which activate resolution pathways to return tissues to homeostasis. These mediators are diverse in nature, and include specialized lipid mediators (lipoxins, resolvins, protectins and maresins) proteins (annexin A1, galectins) and peptides, gaseous mediators including hydrogen sulphide, a purine (adenosine), as well as neuromodulator release under the control of the vagus nerve. Functionally, they can act to limit further leukocyte recruitment, induce neutrophil apoptosis and enhance efferocytosis by macrophages. They can also switch macrophages from classical to alternatively activated cells, promote the return of non-apoptotic cells to the lymphatics and help initiate tissue repair mechanisms and healing. Within this review we highlight the essential cellular aspects required for successful tissue resolution, briefly discuss the pro-resolution mediators that drive these processes and consider potential challenges faced by researchers in the quest to discover how inflammation resolves and why chronic inflammation persists. Copyright © 2015 Elsevier Ltd. All rights reserved.
    Seminars in Immunology 04/2015; DOI:10.1016/j.smim.2015.03.014 · 6.12 Impact Factor

Full-text (2 Sources)

Available from
May 21, 2014