Article

Increased pulmonary responses to acute ozone exposure in obese db/db mice

Harvard University, Cambridge, Massachusetts, United States
AJP Lung Cellular and Molecular Physiology (Impact Factor: 4.04). 06/2006; 290(5):L856-65. DOI: 10.1152/ajplung.00386.2005
Source: PubMed

ABSTRACT Epidemiological studies indicate the incidence of asthma is increased in obese and overweight humans. Responses to ozone (O(3)), an asthma trigger, are increased in obese (ob/ob) mice lacking the satiety hormone leptin. The long form of leptin receptor (Ob-R(b)) is required for satiety; mice lacking this receptor (db/db mice) are also substantially obese. Here, wild-type (WT) and db/db mice were exposed to air or O(3) (2 ppm) for 3 h. Airway responsiveness, measured by the forced oscillation technique, was greater in db/db than WT mice after air exposure. O(3)-induced increases in pulmonary resistance and airway responsiveness were also greater in db/db mice. BALF eotaxin, IL-6, KC, and MIP-2 increased 4 h after O(3) exposure and subsided by 24 h, whereas protein and neutrophils continued to increase through 24 h. For each outcome, the effect of O(3) was significantly greater in db/db than WT mice. Previously published results obtained in ob/ob mice were similar except for O(3)-induced neutrophils and MIP-2, which were not different from WT mice. O(3) also induced pulmonary IL-1beta and TNF-alpha mRNA expression in db/db but not ob/ob mice. Leptin was increased in serum of db/db mice, and pulmonary mRNA expression of short form of leptin receptor (Ob-R(a)) was similar in db/db and WT mice. These data confirm obese mice have innate airway hyperresponsiveness and increased pulmonary responses to O(3). Differences between ob/ob mice, which lack leptin, and db/db mice, which lack Ob-R(b) but not Ob-R(a), suggest leptin, acting through Ob-R(a), can modify some pulmonary responses to O(3).

0 Followers
 · 
65 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The understanding of interleukin-1 (IL-1) family cytokines in inflammatory disease has rapidly developed, due in part to the discovery and characterization of inflammasomes, which are multi-subunit intracellular protein scaffolds principally enabling recognition of a myriad of cellular stimuli, leading to the activation of caspase-1 and the processing of IL-1β and IL-18. Studies continue to elucidate the role of inflammasomes in immune responses induced by both microbes and environmental factors. This review focuses on the current understanding of inflammasome activity in the lung, with particular focus on the non-microbial instigators of inflammasome activation, including inhaled antigens, oxidants, cigarette smoke, diesel exhaust particles, mineral fibers, and engineered nanomaterials, as well as exposure to trauma and pre-existing inflammatory conditions such as metabolic syndrome. Inflammasome activity in these sterile inflammatory states contribute to diseases including asthma, chronic obstructive disease, acute lung injury, ventilator-induced lung injury, pulmonary fibrosis, and lung cancer.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although asthma has long been considered a heterogeneous disease, attempts to define subgroups of asthma have been limited. In recent years both clinical and statistical approaches have been utilized to better merge clinical characteristics, biology and genetics. These combined characteristics have been used to define "phenotypes" of asthma, the observable characteristics of a patient determined by the interaction of genes and environment. Identification of consistent clinical phenotypes has been reported across studies. Now the addition of various 'omics and identification of specific molecular pathways has moved the concept of clinical phenotypes towards the concept of molecular phenotypes. The importance of these molecular phenotypes is being confirmed through the integration of molecularly targeted biologic therapies. Thus, the term global asthma is poised to become obsolete, being replaced by terms which more specifically identify the pathology associated with the disease.
    AJP Lung Cellular and Molecular Physiology 10/2014; 308(2). DOI:10.1152/ajplung.00070.2014 · 4.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a risk factor for the development of asthma. Obese mice exhibit innate airway hyperresponsiveness (AHR), a characteristic feature of asthma, and IL-17A is required for development of AHR in obese mice. The purpose of this study was to examine the temporal association between the onset of AHR and changes in IL-17A during the development of obesity by high-fat feeding in mice. At weaning, C57BL/6J mice were placed either on mouse chow or on a high-fat diet (HFD) and examined 9, 12, 15, 18, or 24 weeks later. Airway responsiveness to aerosolized methacholine (assessed via the forced oscillation technique) was greater in mice fed HFD versus chow for 24 weeks but not at earlier time points. Bronchoalveolar lavage and serum IL-17A were not affected by either the type or duration of diet, but increased pulmonary IL17a mRNA abundance was observed in HFD versus chow fed mice after both 18 and 24 weeks. Flow cytometry also confirmed an increase in IL-17A(+) γδ T cells and IL-17A(+) CD4(+) T (Th17) cells in lungs of HFD versus chow fed mice. Pulmonary expression of Cfd (complement factor D, adipsin), a gene whose expression can be reduced by IL-17A, decreased after both 18 and 24 weeks in HFD versus chow fed mice. Furthermore, pulmonary Cfd mRNA abundance correlated with elevations in pulmonary Il17a mRNA expression and with AHR. Serum levels of TNFα, MIP-1α, and MIP-1β, and classical markers of systemic inflammation of obesity were significantly greater in HFD than chow fed mice after 24 weeks, but not earlier. In conclusion, our data indicate that pulmonary rather than systemic IL-17A is important for obesity-related AHR and suggest that changes in pulmonary Cfd expression contribute to these effects of IL-17A. Further, the observation that increases in Il17a preceded the development of AHR by several weeks suggests that IL-17A interacts with other factors to promote AHR. The observation that the onset of the systemic inflammation of obesity coincided temporally with the development of AHR suggest that systemic inflammation may be one of these factors.
    Frontiers in Immunology 09/2014; 5:440. DOI:10.3389/fimmu.2014.00440