Eichler, E.E. Widening the spectrum of human genetic variation. Nat. Genet. 38, 9-11

Nature Genetics (Impact Factor: 29.35). 02/2006; 38(1):9-11. DOI: 10.1038/ng0106-9
Source: PubMed
1 Follower
6 Reads
  • Source
    • "As our data needed to be converted from 10.2 to 9.0, great differences might arise during the transformation, causing the deviation between our results and others. This is also occurred in CNV studies of other mammals [17], [75], [76]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Copy number variations (CNVs) represent a substantial source of structural variants in mammals and contribute to both normal phenotypic variability and disease susceptibility. Although low-resolution CNV maps are produced in many domestic animals, and several reports have been published about the CNVs of porcine genome, the differences between Chinese and western pigs still remain to be elucidated. In this study, we used Porcine SNP60 BeadChip and PennCNV algorithm to perform a genome-wide CNV detection in 302 individuals from six Chinese indigenous breeds (Tongcheng, Laiwu, Luchuan, Bama, Wuzhishan and Ningxiang pigs), three western breeds (Yorkshire, Landrace and Duroc) and one hybrid (Tongcheng×Duroc). A total of 348 CNV Regions (CNVRs) across genome were identified, covering 150.49 Mb of the pig genome or 6.14% of the autosomal genome sequence. In these CNVRs, 213 CNVRs were found to exist only in the six Chinese indigenous breeds, and 60 CNVRs only in the three western breeds. The characters of CNVs in four Chinese normal size breeds (Luchuan, Tongcheng and Laiwu pigs) and two minipig breeds (Bama and Wuzhishan pigs) were also analyzed in this study. Functional annotation suggested that these CNVRs possess a great variety of molecular function and may play important roles in phenotypic and production traits between Chinese and western breeds. Our results are important complementary to the CNV map in pig genome, which provide new information about the diversity of Chinese and western pig breeds, and facilitate further research on porcine genome CNVs.
    PLoS ONE 09/2014; 9(9):e106780. DOI:10.1371/journal.pone.0106780 · 3.23 Impact Factor
  • Source
    • "The SNP genotyping and CGH arrays, for instance, were different in calling technology, resolution differences, and genome coverage [19]. When the PennCNV programs were used both in this study and in the study of Wang et al. [19], 207 CNVRs (54.19%) overlapped.The low overlapping rates were also encountered in the studies of pigs and other mammals [5], [6], [19], [34], [35]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Copy number variations (CNVs) are one of the main contributors to genetic diversity in animals and are broadly distributed in the genomes of swine. Investigating the performance and evolutionary impacts of pig CNVs requires comprehensive knowledge of their structure and function within and between breeds. In the current study, 4 different programs (i.e., GADA, PennCNV, QuantiSNP, and cnvPartition) were used to analyze Porcine SNP60 genotyping data of 585 pigs from one Large White × Minzhu intercross population to detect copy number variant regions (CNVRs). Overlapping CNVRs recalled by at least 2 programs were used to construct a powerful and comprehensive CNVR map, which contained249 CNVRs (i.e., 70 gains, 43 losses, and 136 gains/losses) and covered 26.22% of the regions in the swine genome. Ten CNVRs, representing different predicted statuses, were selected for validation via quantitative real-time PCR (QPCR); 9/10 CNVRs (i.e., 90%) were validated. When being traced back to the F0 generation, 58 events were identified in only Minzhu F0 parents and 2 events were identified in only Large White F0 parents. A series of CNVR function analyses were performed. Some of the CNVRs functions were predicted, and several interesting CNVRs for meat quality traits and hematological parameters were obtained. A comprehensive and lower false rate genome-wide CNV map was constructed for Large White and Minzhu pig genomes in this study. Our results may provide an important basis for determining the relationship between CNVRs and important qualitative and quantitative traits. In addition, it can help to further understand genetic processes in pigs.
    PLoS ONE 10/2013; 8(10):e74879. DOI:10.1371/journal.pone.0074879 · 3.23 Impact Factor
  • Source
    • "Of particular interest to human health, LOF variants were nearly as well tagged by nearby SNPs as non-LOF variants (Figure S6b in Additional file 1). Further, while previous studies by Frazer et al. [34], Eichler et al. [35], and McCarroll et al. [4,36] demonstrated that common indels are in high LD with nearby SNPs, our results revealed that both low frequency and common indels can be reliably tagged by nearby SNPs (Figure 2a). OMNI and HapMap panels ably tag > 70% of common indels, while OMNI tags > 50% of low-frequency indels (Table S4 in Additional file 1) in all populations. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Indels are an important cause of human variation and central to the study of human disease. The 1000 Genomes Project Low-Coverage Pilot identified over 1.3 million indels shorter than 50 bp, of which over 890 were identified as potentially disruptive variants. Yet, despite their ubiquity, the local genomic characteristics of indels remain unexplored. Herein we describe population- and minor allele frequency-based differences in linkage disequilibrium and imputation characteristics for indels included in the 1000 Genomes Project Low-Coverage Pilot for the CEU, YRI and CHB+JPT populations. Common indels were well tagged by nearby SNPs in all studied populations, and were also tagged at a similar rate to common SNPs. Both neutral and functionally deleterious common indels were imputed with greater than 95% concordance from HapMap Phase 3 and OMNI SNP sites. Further, 38 to 56% of low frequency indels were tagged by low frequency SNPs. We were able to impute heterozygous low frequency indels with over 50% concordance. Lastly, our analysis also revealed evidence of ascertainment bias. This bias prevents us from extending the applicability of our results to highly polymorphic indels that could not be identified in the Low-Coverage Pilot. Although further scope exists to improve the imputation of low frequency indels, our study demonstrates that there are already ample opportunities to retrospectively impute indels for prior genome-wide association studies and to incorporate indel imputation into future case/control studies.
    Genome biology 02/2012; 13(2):R15. DOI:10.1186/gb-2012-13-2-r15 · 10.81 Impact Factor
Show more