Article

Spatial patterns of the pathological changes in the temporal lobe of patients with neuronal intermediate filament inclusion disease.

Departments of Neurology, Pathology, and Immunology, Washington University of St Louis School of Medicine, St Louis, Missouri, USA.
Neuropathology (Impact Factor: 1.91). 01/2006; 25(4):298-303. DOI: 10.1111/j.1440-1789.2005.00639.x
Source: PubMed

ABSTRACT Neuronal intermediate filament inclusion disease (NIFID) is a new neurodegenerative disease characterized histologically by the presence of neuronal cytoplasmic inclusions (NI) immunopositive for intermediate filament proteins, neuronal loss, swollen achromatic neurons (SN), and gliosis. We studied the spatial patterns of these pathological changes parallel to the pia mater in gyri of the temporal lobe in four cases of NIFID. Both the NI and SN occurred in clusters that were regularly distributed parallel to the pia mater, the cluster sizes of the SN being significantly greater than those of the NI. In a significant proportion of areas studied, there was a spatial correlation between the clusters of NI and those of the SN and with the density of the surviving neurons. In addition, the clusters of surviving neurons were negatively correlated (out of phase) with the clusters of glial cell nuclei. The pattern of clustering of these histological features suggests that there is degeneration of the cortico-cortical projections in NIFID leading to the formation of NI and SN within the same vertical columns of cells. The glial cell reaction may be a response to the loss of neurons rather than to the appearance of the NI or SN.

0 Bookmarks
 · 
29 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Discrete pathological lesions, which include extracellular protein deposits, intracellular inclusions and changes in cell morphology, occur in the brain in the majority of neurodegenerative disorders. These lesions are not randomly distributed in the brain but exhibit a spatial pattern, that is, a departure from randomness towards regularity or clustering. The spatial pattern of a lesion may reflect pathological processes affecting particular neuroanatomical structures and, therefore, studies of spatial pattern may help to elucidate the pathogenesis of a lesion and of the disorders themselves. The present article reviews first, the statistical methods used to detect spatial patterns and second, the types of spatial patterns exhibited by pathological lesions in a variety of disorders which include Alzheimer's disease, Down syndrome, dementia with Lewy bodies, Creutzfeldt-Jakob disease, Pick's disease and corticobasal degeneration. These studies suggest that despite the morphological and molecular diversity of brain lesions, they often exhibit a common type of spatial pattern (i.e. aggregation into clusters that are regularly distributed in the tissue). The pathogenic implications of spatial pattern analysis are discussed with reference to the individual disorders and to studies of neurodegeneration as a whole.
    Neuropathology 04/2001; 21(1):1-12. · 1.91 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The most common degenerative diseases of the human brain are characterized by the presence of abnormal filamentous inclusions in affected nerve cells and glial cells. These diseases can be grouped into two classes, based on the identity of the major proteinaceous components of the filamentous assemblies. The filaments are made of either the microtubule-associated protein tau or the protein alpha-synuclein. Importantly, the discovery of mutations in the tau gene in familial forms of frontotemporal dementia and of mutations in the alpha-synuclein gene in familial forms of Parkinson's disease has established that dysfunction of tau protein and alpha-synuclein can cause neurodegeneration.
    Philosophical Transactions of The Royal Society B Biological Sciences 03/2001; 356(1406):213-27. · 6.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The numbers and distribution of the neurofibrillary tangles and neuritic plaques have been determined in several areas of the neocortex in brains affected by various degrees of severity of Alzheimer disease. The homotypical cortex of the "association" areas of the temporal, parietal, and frontal lobes are severely involved, whereas the motor, somatic sensory, and primary visual areas are virtually unaffected. The neurofibrillary tangles are mainly in the supra- and infragranular layers, particularly in layers III and V. In all areas except area 18 in the occipital lobe, there are approximately twice as many tangles in layer V as in layer III. The tangles are arranged in definite clusters, and those in the supra- and infragranular layers are in register. The neuritic plaques occur in all layers but predominantly affect layers II and III and do not show clustering. These data on the severity of the pathological involvement in different areas of the neocortex and the laminar distribution and the clustering of the tangles support the suggestion that the pathological changes in Alzheimer disease affect regions that are interconnected by well-defined groups of connections and that the disease process may extend along the connecting fibers. The invariable and severe involvement of the olfactory areas of the brain in this disease is in striking contrast to the minimal changes in the somatic sensory and primary visual areas and raises the possibility that the olfactory pathway may be initially involved.
    Proceedings of the National Academy of Sciences 08/1985; 82(13):4531-4. · 9.81 Impact Factor