Kinase-Dependent Differentiation of a Retinal Ganglion Cell Precursor

Department of Ophthalmology and Visual Sciences, University of Wisconsin Medical School, Madison, WI 53792, USA.
Investigative Ophthalmology &amp Visual Science (Impact Factor: 3.66). 02/2006; 47(1):427-38. DOI: 10.1167/iovs.05-0340
Source: PubMed

ABSTRACT Cell lines are frequently used to elucidate mechanisms of disease pathophysiology. Yet extrapolation of results with cell lines to neurodegenerative disorders is difficult because they are mitotic and usually have other non-neuronal properties. The RGC-5 cell line has many features of retinal ganglion cells (RGCs). Despite its expression of Thy-1 and NMDA receptors, as found in primary RGCs, this line's ability to proliferate and non-neuronal appearance differentiate it from other central neurons, complicating its use for the study of neuronal survival, electrophysiology, or neurite extension.
A method was identified for differentiating RGC-5 cells using the nonspecific protein kinase inhibitor staurosporine. Cultures were treated with 100 nM to 3.16 muM staurosporine and assessed for a variety of differentiation markers.
Differentiated RGC-5 cells expressed numerous neuronal properties, including arrest of proliferation without inducing apoptosis, induction of a neuronal morphology, upregulation of neuronal markers, and establishment of outward rectifying channels. Differentiation was not dependent on a single kinase-dependent pathway, based on profiling multiple kinase phosphorylation targets and attempts to replicate differentiation with multiple specific kinase inhibitors.
This method for producing an RGC-like cell from a proliferating cell line facilitates the following previously impractical techniques: high-throughput screening for agents that are neuroprotective or affect ionic channels; straightforward transduction of gene expression in central neurons by nonviral transfection techniques, including production of stable transfectants; biochemical and other assays of pure RGC-like cells without purification on the basis of cell-surface antigens or anatomic location.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia-induced apoptosis of retinal ganglion cells (RGCs) is regarded as a pivotal pathological process in various ocular diseases. Protease-activated receptor-2 (PAR-2) is involved in the regulation of cell inflammation, differentiation, and apoptosis in many cell types and tissues, but the role of PAR-2 in RGCs under pathological conditions remains unknown. The purpose of this study was to investigate the role of PAR-2 in the apoptosis of RGCs under hypoxic stress. An immortalized rat RGC line (RGC-5) was exposed to hypoxia (5 % O(2)). The expression and location of PAR-2 in RGC-5 cells under hypoxia stress were investigated using real-time PCR, western blotting and immunocytochemistry. Cell viability was determined using the Cell Counting Kit-8 assay. Apoptosis was detected using Hoechst 33342 staining and AnnexinV-FITC/PI assays. The role of Bcl-2, Bax, and the active subunit of caspase-3 was also investigated. The results showed that PAR-2 was functionally expressed in RGC-5 cells and up-regulated at both mRNA and protein levels under hypoxic stress. The PAR-2 selective agonist, SLIGRL, rescued RGC-5 cells from hypoxia-induced apoptosis through up-regulation of the Bcl-2/Bax ratio and down-regulation of caspase-3 activation. This study provides the first evidence that PAR-2 has a protective effect against the hypoxia-induced apoptosis of RGC-5 cells.
    Journal of Molecular Neuroscience 09/2012; DOI:10.1007/s12031-012-9876-4 · 2.76 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genipin, a herbal iridoid, is known to have both neuroprotective and neuritogenic activity in neuronal cell lines. As it is structurally similar to tetrahydrobiopterin, its activity is believed to be nitric oxide (NO)-dependent. We previously proposed a novel neuroprotective activity of a genipin derivative, (1R)-isoPropyloxygenipin (IPRG001), whereby it reduces oxidative stress in RGC-5, a neuronal precursor cell line of retinal origin through protein S-nitrosylation. In the present study, we investigated another neuritogenic property of IPRG001 in RGC-5 cells and retinal explant culture where in we focused on the NO-cGMP-dependent and protein S-nitrosylation pathways. IPRG001 stimulated neurite outgrowth in RGC-5 cells and retinal explant culture through NO-dependent signaling, but not NO-dependent cGMP signaling. Neurite outgrowth with IPRG001 requires retinoic acid receptor β (RARβ) expression, which is suppressed by an RAR blocking agent and siRNA inhibition. Thereby, we hypothesized that RARβ expression is mediated by protein S-nitrosylation. S-nitrosylation of histone deacetylase 2 is a key mechanism in chromatin remodeling leading to transcriptional gene activation. We found a parallelism between S-nitrosylation of histone diacetylase 2 and the induction of RARβ expression with IPRG001 treatment. The both neuroprotective and neuritogenic activities of genipin could be a new target for the regeneration of retinal ganglion cells after glaucomatous conditions.
    Journal of Neurochemistry 12/2011; 119(6):1232-42. DOI:10.1111/j.1471-4159.2011.07533.x · 4.24 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Modulation of enzyme activity through nitrosylation has recently been identified as a new physiological activity of nitric oxide (NO). We hypothesized that NO enhances the TNF-α-induced death of retinal neurons through a suppression of nuclear factor-κB (NF-κB) by nitrosylation. In this study, cells from the RGC-5 line were exposed to different concentrations (2.0, 10, and 50 ng/ml) of TNF-α, and the degree of TNF-α-induced cell death was determined by the WST-8 assay and by flow cytometric measurements of the externalization of phosphatidylserine. The effects of etanercept, a soluble TNFR-Fc fusion protein, and S-nitroso-N-penicillamine (SNAP), an NO donor, on the toxicity were determined. Experiments were also performed to determine whether nitric oxide synthase (NOS) was associated with the toxicity of TNF-α. The activation of NF-κB was determined by the detection of the p65 subunit in the nuclear extracts. Our results showed that exposure of RGC-5 cells to different concentrations of TNF-α significantly decreased the number of living cells in a dose-dependent way. The death was partially due to apoptosis with an externalization of phosphatidylserine, and the death was suppressed by etanercept. Exposure to TNF-α increased the activation of NF-κB and the expression of iNOS. Although NF-κB inhibitors suppressed the increase of iNOS, they also potentiated the TNF-α-induced death. Both L-NAME and aminoguanidine, both NOS inhibitors, rescued the cells from death. In contrast, addition of SNAP caused nitrosylation of the inhibitory κB kinase, and suppressed the NF-κB activation and potentiated the TNF-α-induced neurotoxicity. These results indicate that NO potentiates the neurotoxicity of TNF-α by suppressing NF-κB.
    Cellular and Molecular Neurobiology 07/2011; 32(1):95-106. DOI:10.1007/s10571-011-9739-5 · 2.20 Impact Factor