Spectrum and Frequency of Mutations in IMPDH1 Associated with Autosomal Dominant Retinitis Pigmentosa and Leber Congenital Amaurosis

Department of Biochemistry, Brandeis University, Волтам, Massachusetts, United States
Investigative Ophthalmology &amp Visual Science (Impact Factor: 3.66). 02/2006; 47(1):34-42. DOI: 10.1167/iovs.05-0868
Source: PubMed

ABSTRACT The purpose of this study was to determine the frequency and spectrum of inosine monophosphate dehydrogenase type I (IMPDH1) mutations associated with autosomal dominant retinitis pigmentosa (RP), to determine whether mutations in IMPDH1 cause other forms of inherited retinal degeneration, and to analyze IMPDH1 mutations for alterations in enzyme activity and nucleic acid binding.
The coding sequence and flanking intron/exon junctions of IMPDH1 were analyzed in 203 patients with autosomal dominant RP (adRP), 55 patients with autosomal recessive RP (arRP), 7 patients with isolated RP, 17 patients with macular degeneration (MD), and 24 patients with Leber congenital amaurosis (LCA). DNA samples were tested for mutations by sequencing only or by a combination of single-stranded conformational analysis and by sequencing. Production of fluorescent reduced nicotinamide adenine dinucleotide (NADH) was used to measure enzymatic activity of mutant IMPDH1 proteins. The affinity and the specificity of mutant IMPDH1 proteins for single-stranded nucleic acids were determined by filter-binding assays.
Five different IMPDH1 variants, Thr116Met, Asp226Asn, Val268Ile, Gly324Asp, and His 372Pro, were identified in eight autosomal dominant RP families. Two additional IMPDH1 variants, Arg105Trp and Asn198Lys, were found in two patients with isolated LCA. None of the novel IMPDH1 mutants identified in this study altered the enzymatic activity of the corresponding proteins. In contrast, the affinity and/or the specificity of single-stranded nucleic acid binding were altered for each IMPDH1 mutant except the Gly324Asp variant.
Mutations in IMPDH1 account for approximately 2% of families with adRP, and de novo IMPDH1 mutations are also rare causes of isolated LCA. This analysis of the novel IMPDH1 mutants substantiates previous reports that IMPDH1 mutations do not alter enzyme activity and demonstrates that these mutants alter the recently identified single-stranded nucleic acid binding property of IMPDH. Studies are needed to further characterize the functional significance of IMPDH1 nucleic acid binding and its potential relationship to retinal degeneration.

Download full-text


Available from: Lori S Sullivan, Jul 03, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyses the rate-limiting step in guanine nucleotide biosynthesis. IMPDH has an evolutionary conserved CBS subdomain of unknown function. The subdomain can be deleted without impairing the in vitro IMPDH catalytic activity and is the site for mutations associated with human retinitis pigmentosa. A guanine-prototrophic Escherichia coli strain, MP101, was constructed with the subdomain sequence deleted from the chromosomal gene for IMPDH. The ATP content was substantially elevated in MP101 whereas the GTP content was slighty reduced. The activities of IMPDH, adenylosuccinate synthetase and GMP reductase were two to threefold lower in MP101 crude extracts compared with the BW25113 wild-type strain. Guanine induced a threefold reduction in the MP101 ATP pool and a fourfold increase in the GTP pool within 10 min of addition to growing cells; this response does not result from the reduced IMPDH activity or starvation for guanylates. In vivo kinetic analysis using 14-C tracers and 33-P pulse-chasing revealed mutation-associated changes in purine nucleotide fluxes and turnover rates. We conclude that the CBS subdomain of IMPDH may coordinate the activities of the enzymes of purine nucleotide metabolism and is essential for maintaining the normal ATP and GTP pool sizes in E. coli.
    Molecular Microbiology 05/2008; 68(2):342-59. DOI:10.1111/j.1365-2958.2008.06153.x · 5.03 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to determine the role of the retinol dehydrogenase 12 (RDH12) gene in patients affected with Leber congenital amaurosis (LCA), autosomal recessive retinitis pigmentosa (arRP) and autosomal dominant/recessive cone-rod dystrophies (CORD). Changes in the promoter region, coding regions and exon/intron junctions of the RDH12 gene were evaluated using direct DNA sequencing of patients affected with LCA (n=36 cases), RP (n=62) and CORD (n=21). The allele frequency of changes observed was assessed in a multiethnic control population (n=159 individuals). Detailed biochemical and structural modeling analysis of the observed mutations were performed to assess their biological role in the inactivation of Rdh12. A comprehensive clinical assessment of retinal structure and function in LCA patients carrying mutations in the RDH12 gene was completed. Of the six changes identified, three were novel including a homozygous C201R change in a patient affected with LCA, a heterozygous A177V change in patients affected with CORD and a heterozygous G46G change in a patient affected with LCA. A novel compound heterozygote T49M/A269fsX270 mutation was also found in a patient with LCA, and both homozygous and heterozygous R161Q changes were seen in 26 patients affected with LCA, CORD or RP. These R161Q, G46G and the A177V sequence changes were shown to be polymorphic. We found that Rdh12 mutant proteins associated with LCA were inactive or displayed only residual activity when expressed in COS-7 and Sf9 cells, whereas those mutants that were considered polymorphisms were fully active. Thus, impairment of retinal structure and function for patients carrying these mutations correlated with the biochemical properties of the mutants.
    Vision Research 08/2007; 47(15):2055-66. DOI:10.1016/j.visres.2007.04.005 · 2.38 Impact Factor
  • Source